26 research outputs found
Ultrasonic Nonlinearity Experiment due to Plastic Deformation of Aluminum Plate Due to Bending Damage
The nonlinear ultrasonic evaluation technique is useful for assessing micro-defects and microstructure changes caused by fatigue or bending damage. In particular, the guided wave is advantageous for long-distance testing such as piping and plate. Despite these advantages, the study of nonlinear guided wave propagation has received relatively less attention compared to bulk wave techniques. Furthermore, there is a lack of research on the correlation between nonlinear parameters and material properties. In this study, the relationship between nonlinear parameters and plastic deformation resulting from bending damage was experimentally investigated using Lamb waves. The findings indicated an increase in the nonlinear parameter for the specimen, which was loaded within the elastic limit. Inversely, regions of maximum deflection in specimens with plastic deformation exhibited a decrease in the nonlinear parameter. This research is expected to be helpful for maintenance technology in the nuclear power plant and aerospace fields that require high reliability and accuracy
A Feasibility Study for a Nonlinear Guided Wave Mixing Technique
Ultrasonic non-destructive testing is an effective means of examining objects without destroying them. Among such testing, ultrasonic nonlinear evaluation is used to detect micro-damage, such as corrosion or plastic deformation. In terms of micro-damage evaluation, the data that comes from amplitude comparison in the frequency domain plays a significant role. Its technique and parameter are called ultrasonic nonlinear technique and nonlinearity. A certain portion of nonlinearity comes from the equipment system, while the other portion of nonlinearity comes from the material. The former is system nonlinearity, while the latter is material nonlinearity. System nonlinearity interferes with interpretation, because its source is not from the material. In this study, in order to minimize system effects, a mixing technique is implemented. To use the large area inspection ability of the guided wave, the main research issue in this paper is focused on the guided wave mixing technique. Moreover, several bulk wave mixing theory equations become good concepts for guided wave mixing theoretical study, and the conventional nonlinear technique and guided wave mixing experimental results are compared in this study to confirm the reliability. This technique can play an important role in quantitatively discriminating fine damage by minimizing the nonlinearity of the equipment system
High-Precision Noncontact Guided Wave Tomographic Imaging of Plate Structures Using a DHB Algorithm
The safety diagnostic inspection of large plate structures, such as nuclear power plant containment liner plates and aircraft wings, is an important issue directly related to the safety of life. This research intends to present a more quantitative defect imaging in the structural health monitoring (SHM) technique by using a wide range of diagnostic techniques using guided ultrasound. A noncontact detection system was applied to compensate for such difficulties because direct access inspection is not possible for high-temperature and massive areas such as nuclear power plants and aircraft. Noncontact systems use unstable pulse laser and air-coupled transducers. Automatic detection systems were built to increase inspection speed and precision and the signal was measured. In addition, a new Difference Hilbert Back Projection (DHB) algorithm that can replace the reconstruction algorithm for the probabilistic inspection of damage (RAPID) algorithm used for imaging defects has been successfully applied to quantitative imaging of plate structure defects. Using an automatic detection system, the precision and detection efficiency of data collection has been greatly improved, and the same results can be obtained by reducing errors in experimental conditions that can occur in repeated experiments. Defects were made in two specimens, and comparative analysis was performed to see if each algorithm can quantitatively represent defects in multiple defects. The new DHB algorithm presented the possibility of observing and predicting the growth direction of defects through the continuous monitoring system
Bin2Vec: A Better Wafer Bin Map Coloring Scheme for Comprehensible Visualization and Effective Bad Wafer Classification
A wafer bin map (WBM), which is the result of an electrical die-sorting test, provides information on which bins failed what tests, and plays an important role in finding defective wafer patterns in semiconductor manufacturing. Current wafer inspection based on WBM has two problems: good/bad WBM classification is performed by engineers and the bin code coloring scheme does not reflect the relationship between bin codes. To solve these problems, we propose a neural network-based bin coloring method called Bin2Vec to make similar bin codes are represented by similar colors. We also build a convolutional neural network-based WBM classification model to reduce the variations in the decisions made by engineers with different expertise by learning the company-wide historical WBM classification results. Based on a real dataset with a total of 27,701 WBMs, our WBM classification model significantly outperformed benchmarked machine learning models. In addition, the visualization results of the proposed Bin2Vec method makes it easier to discover meaningful WBM patterns compared with the random RGB coloring scheme. We expect the proposed framework to improve both efficiencies by automating the bad wafer classification process and effectiveness by assigning similar bin codes and their corresponding colors on the WBM
Underground Object Classification for Urban Roads Using Instantaneous Phase Analysis of Ground-Penetrating Radar (GPR) Data
Ground-penetrating radar (GPR) has been widely used to detect subsurface objects, such as hidden cavities, buried pipes, and manholes, owing to its noncontact sensing, rapid scanning, and deeply penetrating remote-sensing capabilities. Currently, GPR data interpretation depends heavily on the experience of well-trained experts because different types of underground objects often generate similar GPR reflection features. Moreover, reflection visualizations that were obtained from field GPR data for urban roads are often weak and noisy. This study proposes a novel instantaneous phase analysis technique to address these issues. The proposed technique aims to enhance the visibility of underground objects and provide objective criteria for GPR data interpretation so that the objects can be automatically classified without expert intervention. The feasibility of the proposed technique is validated both numerically and experimentally. The field test utilizes rarely available GPR data for urban roads in Seoul, South Korea and demonstrates that the technique allows for successful visualization and classification of three different types of underground objects
Current Status, Challenges, Policies, and Bioethics of Biobanks
Many biobanks were established as biorepositories for biomedical research, and a number of biobanks were founded in the 1990s. The main aim of the biobank is to store and to maintain biomaterials for studying chronic disease, identifying risk factors of specific diseases, and applying personalized drug therapies. This report provides a review of biobanks, including Korean biobanks and an analysis of sample volumes, regulations, policies, and ethical issues of the biobank. Until now, the top 6 countries according to the number of large-scale biobanks are the United Kingdom, United States, Sweden, France, the Netherlands, and Italy, and there is one major National Biobank of Korea (NBK) and 17 regional biobanks in Korea. Many countries have regulations and guidelines for the biobanks, and the importance of good management of biobanks is increasing. Meanwhile, according to a first survey of 456 biobank managers in the United States, biobankers are concerned with the underuse of the samples in their repositories, which need to be advertised for researchers. Korea Biobank Network (KBN) project phase II (2013-2015) was also planned for the promotion to use biospecimens in the KBN. The KBN is continuously introducing for researchers to use biospecimens in the biobank. An accreditation process can also be introduced for biobanks to harmonize collections and encourage use of biospecimens in the biobanks. KBN is preparing an on-line application system for the distribution of biospecimens and a biobank accreditation program and is trying to harmonize the biobanks