156 research outputs found

    A large-aperture strip-grid beam splitter for partially combined two millimeter-wave diagnostics on Korea Superconducting Tokamak Advanced Research

    Get PDF
    A large-aperture beam splitter has been developed for simultaneous operation of two millimeter-wave diagnostics employing different probe beams in the frequency and polarization, microwave imaging reflectometer (???85 GHz X-mode), and collective scattering system (300 GHz O-mode), on the Korea Superconducting Tokamak Advanced Research device. The beam splitter was designed based on a polarizer concept (i.e., grid of metal strips on a thin dielectric sheet), and this can be an optimal solution for these two diagnostics. Fabrication of the strips with uniform sub-millimeter width and spacing on a large dielectric sheet was achieved with an etching technique, and the laboratory test results on the reflection and transmission ratio are in good agreement with design values

    Quasi-coherent fluctuation measurement with the upgraded microwave imaging reflectometer in KSTAR

    Get PDF
    The microwave imaging reflectometer (MIR) is the leading diagnostic tool for study of density fluctuations in KSTAR. For last three years since 2014, major components such as the multi-frequency probe beam source, multi-channel detector array, signal processing electronic system, data acquisition system, and optical system have been gradually upgraded. In this paper, the detailed system upgrade with test results in the laboratory and/or plasma is given, and analysis results of a distinctive fluctuation structure referred to as the quasi-coherent mode (QCM) measured by the upgraded MIR system for an L-mode discharge are presented. Cross-coherence analysis with multiple channels shows that the QCM is localized in a core region and appears to be driven by electron temperature gradient for the discharg

    Toroidal mode number estimation of the edge-localized modes using the KSTAR 3-D electron cyclotron emission imaging system

    Get PDF
    A new and more accurate technique is presented for determining the toroidal mode number n of edge-localized modes (ELMs) using two independent electron cyclotron emission imaging (ECEI) systems in the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The technique involves the measurement of the poloidal spacing between adjacent ELM filaments, and of the pitch angle ?? O of filaments at the plasma outboard midplane. Equilibrium reconstruction verifies that ?? O is nearly constant and thus well-defined at the midplane edge. Estimates of n obtained using two ECEI systems agree well with n measured by the conventional technique employing an array of Mirnov coils.open3

    Nonlinear Interaction of Edge-Localized Modes and Turbulent Eddies in Toroidal Plasma under n=1 Magnetic Perturbation

    Get PDF
    The effect of static n = 1 resonant magnetic perturbation (RMP) on the spatial structure and temporal dynamics of edge-localized modes (ELMs) and edge turbulence in tokamak plasma has been investigated. Two-dimensional images measured by a millimeter-wave camera on the KSTAR tokamak revealed that the coherent filamentary modes (i.e., ELMs) are still present in the edge region when the usual large scale collapse of the edge confinement, i.e., the ELM crash, is completely suppressed by n = 1 RMP. Cross-correlation analyses on the 2D images show that (1) the RMP enhances turbulent fluctuations in the edge toward the ELM-crash-suppression phase, (2) the induced turbulence has a clear dispersion relation for wide ranges of wave number and frequency, and (3) the turbulence involves a net radially outward energy transport. Nonlinear interactions of the turbulent eddies with the coexisting ELMs are clearly observed by bispectral analysis, which implies that the exchange of energy between them may be the key to the prevention of large scale crashes.clos

    Quasi 3D ECE imaging system for study of MHD instabilities in KSTAR

    Get PDF
    A second electron cyclotron emission imaging (ECEI) system has been installed on the KSTAR tokamak, toroidally separated by 1/16th of the torus from the first ECEI system. For the first time, the dynamical evolutions of MHD instabilities from the plasma core to the edge have been visualized in quasi-3D for a wide range of the KSTAR operation (B0 = 1.7???3.5 T). This flexible diagnostic capability has been realized by substantial improvements in large-aperture quasi-optical microwave components including the development of broad-band polarization rotators for imaging of the fundamental ordinary ECE as well as the usual 2nd harmonic extraordinary ECE.open1

    Diagnostics and required R&D for control of DEMO grade plasmas

    No full text
    Even if the diagnostics of ITER performs as expected, installation and operation of the diagnostic systems in Demo device will be much harsher than those of the present ITER device. In order to operate the Demo grade plasmas, which may have a higher beta limit, safely with very limited number of simple diagnostic system, it requires a well defined predictable plasma modelling in conjunction with the reliable control system for burn control and potential harmful instabilities. Development of such modelling in ITER is too risky and the logical choice would be utilization of the present day steady state capable devices such as KSTAR and EAST. In order to fulfill this mission, sophisticated diagnostic systems such as 2D/3D imaging systems can validate the physics in the theoretical modeling and challenge the predictable capability

    Advancement of fusion science research and role of KSTAR

    No full text

    Vision of the KSTAR research for beyond the ITER

    No full text

    Magnetic reconnection processes in the KSTAR plasmas and q-profile evolution during the sawtooth crash

    No full text

    Magnetic reconnection process in the core of toroidal plasmas

    No full text
    • โ€ฆ
    corecore