36 research outputs found

    Asking Clarification Questions to Handle Ambiguity in Open-Domain QA

    Full text link
    Ambiguous questions persist in open-domain question answering, because formulating a precise question with a unique answer is often challenging. Previously, Min et al. (2020) have tackled this issue by generating disambiguated questions for all possible interpretations of the ambiguous question. This can be effective, but not ideal for providing an answer to the user. Instead, we propose to ask a clarification question, where the user's response will help identify the interpretation that best aligns with the user's intention. We first present CAMBIGNQ, a dataset consisting of 5,654 ambiguous questions, each with relevant passages, possible answers, and a clarification question. The clarification questions were efficiently created by generating them using InstructGPT and manually revising them as necessary. We then define a pipeline of tasks and design appropriate evaluation metrics. Lastly, we achieve 61.3 F1 on ambiguity detection and 40.5 F1 on clarification-based QA, providing strong baselines for future work.Comment: 15 pages, 4 figure

    The ERK MAPK Pathway Is Essential for Skeletal Development and Homeostasis

    Get PDF
    Mitogen-activated protein kinases (MAPKs) are a family of protein kinases that function as key signal transducers of a wide spectrum of extracellular stimuli, including growth factors and pro-inflammatory cytokines. Dysregulation of the extracellular signal-regulated kinase (ERK) MAPK pathway is associated with human skeletal abnormalities including Noonan syndrome, neurofibromatosis type 1, and cardiofaciocutaneous syndrome. Here, we demonstrate that ERK activation in osteoprogenitors is required for bone formation during skeletal development and homeostasis. Deletion of Mek1 and Mek2, kinases upstream of ERK MAPK, in osteoprogenitors (Mek1(Osx)Mek2(-/-)), resulted in severe osteopenia and cleidocranial dysplasia (CCD), similar to that seen in humans and mice with impaired RUNX2 function. Additionally, tamoxifen-induced deletion of Mek1 and Mek2 in osteoprogenitors in adult mice (Mek1(Osx-ERT)Mek2(-/-)) significantly reduced bone mass. Mechanistically, this corresponded to decreased activation of osteoblast master regulators, including RUNX2, ATF4, and beta-catenin. Finally, we identified potential regulators of osteoblast differentiation in the ERK MAPK pathway using unbiased phospho-mass spectrometry. These observations demonstrate essential roles of ERK activation in osteogenesis and bone formation

    Pimecrolimus interferes the therapeutic efficacy of human mesenchymal stem cells in atopic dermatitis by regulating NFAT-COX2 signaling

    Get PDF
    Abstract Background Human mesenchymal stem cells (hMSCs) therapy has recently been considered a promising treatment for atopic dermatitis (AD) due to their immunomodulation and tissue regeneration ability. In our previous studies, we demonstrated that hMSCs alleviate allergic inflammation in murine AD model by inhibiting the activation of mast cells and B cells. Also our phase I/IIa clinical trial showed clinical efficacy and safety of hMSCs in moderate-to-severe adult AD patients. However, hMSCs therapy against atopic dermatitis have had poor results in clinical field. Therefore, we investigated the reason behind this result. We hypothesized that drug–cell interaction could interfere with the therapeutic efficacy of stem cells, and investigated whether coadministration with pimecrolimus, one of the topical calcineurin inhibitors, could influence the therapeutic potential of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) in AD. Methods hUCB-MSCs were subcutaneously injected to AD-induced mice with or without pimecrolimus topical application. To examine whether pimecrolimus influenced the immunomodulatory activity of hUCB-MSCs, hUCB-MSCs were treated with pimecrolimus. Results Pimecrolimus disturbed the therapeutic effect of hUCB-MSCs when they were co-administered in murine AD model. Moreover, the inhibitory functions of hUCB-MSCs against type 2 helper T (Th2) cell differentiation and mast cell activation were also deteriorated by pimecrolimus treatment. Interestingly, we found that pimecrolimus decreased the production of PGE2, one of the most critical immunomodulatory factors in hUCB-MSCs. And we demonstrated that pimecrolimus downregulated COX2-PGE2 axis by inhibiting nuclear translocation of NFAT3. Conclusions Coadministration of pimecrolimus with hMSCs could interfere with the therapeutic efficacy of hMSCs in atopic dermatitis, and this is the first study that figured out the interaction of hMSCs with other drugs in cell therapy of atopic dermatitis. Therefore, this study might give rise to improvement of the clinical application of hMSCs therapy and facilitate the widespread application of hMSCs in clinical field

    Characters of authority: Women, exemplary texts, and emulation in late medieval England

    Full text link
    This dissertation argues that outwardly manifest traits form characters of authority that can establish an individual\u27s credibility as speakers in public discourse. The idea that outward conduct, traits, and words can be a means to build a publicly authoritative persona is particularly important for women in late medieval England partaking in religious discourse, because the social tension surrounding orthodoxy and preaching provided for women a potentially hostile atmosphere to speak of religion and devotion in a public platform. Emulating the characters of sanctity and authority depicted in exemplary texts, women establish for themselves credible personae as speakers. Focusing on Ancrene Wisse, Geoffrey Chaucer\u27s Prioress and the Second Nun in the Canterbury Tales, John Lydgate\u27s Life of Our Lady, Julian of Norwich\u27s A Revelation of Love, and Margery Kempe\u27s The Book of Margery Kempe, this study argues that the female personae of the above works are are rendered authoritative through characters they demonstrate, which are seen as acceptable manifestation of devotional authority. In so doing, this dissertation contributes to the ongoing scholarly discussion on the formation of self and authority in the Middle Ages

    Evaluation and Validation of Photovoltaic Potential Based on Time and Pathway of Solar-Powered Electric Vehicle

    Full text link
    This study evaluates and validates the power output potential of using the travel time and driving route of a photovoltaic (PV)-powered electric vehicle (EV). A scenario was constructed wherein a car with modules attached to four sides (roof, rear window, left door, and right door) drove on seventeen road sections with various inclinations and azimuths. The shadow effect of the surrounding terrain and buildings was considered to assess the PV potential. Consequently, it was possible to analyze the differences in the potential of the four modules in the same or two sections with different topographies. It was determined that the car could produce 0.0158 kWh for a single drive (approximately 10 min) and 221 kWh for one year (considering six hours a day). The potential of the roof module was the highest, followed by those of the rear and two doors. The potentials of the modules attached to the rear window and side doors were calculated to be approximately 42% and 27%, respectively, of the roof module potential. Furthermore, the possibility of enhancing the potential of future PV-powered EVs was discussed. The results obtained in this study can be used to develop power-output algorithms and navigation solutions for PV-powered EVs

    Evaluating Influence of Inverter-based Resources on System Strength Considering Inverter Interaction Level

    Full text link
    The penetration of renewable energy sources (RESs) equipped with inverter-based control systems such as wind and solar plants are increasing. Therefore, the speed of the voltage controllers associated with inverter-based resources (IBRs) has a substantial impact on the stability of the interconnected grid. System strength evaluation is one of the important concerns in the integration of IBRs, and this strength is often evaluated in terms of the short circuit ratio (SCR) index. When IBRs are installed in an adjacent location, system strength can be weaker than evaluation by SCR. This study proposes an inverter interaction level short circuit ratio (IILSCR) method by tracing IBRs output flow. The IILSCR can accurately estimate system strength, wherein IBRs are connected in adjacent spots, by reflecting the interaction level between IBRs. The study also demonstrates the efficiency of IILSCR by applying this method to Institute of Electrical and Electronics Engineers (IEEE) 39 bus test system and future Korea power systems

    Impact of Momentary Cessation Voltage Level in Inverter-Based Resources on Increasing the Short Circuit Current

    Full text link
    This study analyzed the impact of varying the momentary cessation (MC) voltage level on the short circuit current of inverter-based resources (IBRs). To analyze the impact of the IBR MC function on the short circuit current, this paper proposes an advanced IBR model for fault current calculation to reflect its fault characteristics and a scheme for analyzing the influence of MC on the short circuit current. Based on the proposed methods, the authors conducted case studies using planning data from the Korea Electric Power Corporation (KEPCO). The influence of MC was investigated on the IBRs located at the southwest side of the KEPCO systems by screening the fault currents while varying the MC voltage. This paper demonstrates that the minimum MC voltage level needed for the fault current not to exceed the circuit breaker (CB) capacity can be proposed through analyzing the impact of MC voltage level on the short circuit current. The test results based on the proposed scheme showed that the short circuit current to power systems could not violate CB capacity if IBRs adjusted the MC voltage level higher than the lowest MC voltage level
    corecore