62 research outputs found

    Weakly- and Self-Supervised Learning for Content-Aware Deep Image Retargeting

    Full text link
    This paper proposes a weakly- and self-supervised deep convolutional neural network (WSSDCNN) for content-aware image retargeting. Our network takes a source image and a target aspect ratio, and then directly outputs a retargeted image. Retargeting is performed through a shift map, which is a pixel-wise mapping from the source to the target grid. Our method implicitly learns an attention map, which leads to a content-aware shift map for image retargeting. As a result, discriminative parts in an image are preserved, while background regions are adjusted seamlessly. In the training phase, pairs of an image and its image-level annotation are used to compute content and structure losses. We demonstrate the effectiveness of our proposed method for a retargeting application with insightful analyses.Comment: 10 pages, 11 figures. To appear in ICCV 2017, Spotlight Presentatio

    Torque-based Deep Reinforcement Learning for Task-and-Robot Agnostic Learning on Bipedal Robots Using Sim-to-Real Transfer

    Full text link
    In this paper, we review the question of which action space is best suited for controlling a real biped robot in combination with Sim2Real training. Position control has been popular as it has been shown to be more sample efficient and intuitive to combine with other planning algorithms. However, for position control gain tuning is required to achieve the best possible policy performance. We show that instead, using a torque-based action space enables task-and-robot agnostic learning with less parameter tuning and mitigates the sim-to-reality gap by taking advantage of torque control's inherent compliance. Also, we accelerate the torque-based-policy training process by pre-training the policy to remain upright by compensating for gravity. The paper showcases the first successful sim-to-real transfer of a torque-based deep reinforcement learning policy on a real human-sized biped robot. The video is available at https://youtu.be/CR6pTS39VRE

    ACLS: Adaptive and Conditional Label Smoothing for Network Calibration

    Full text link
    We address the problem of network calibration adjusting miscalibrated confidences of deep neural networks. Many approaches to network calibration adopt a regularization-based method that exploits a regularization term to smooth the miscalibrated confidences. Although these approaches have shown the effectiveness on calibrating the networks, there is still a lack of understanding on the underlying principles of regularization in terms of network calibration. We present in this paper an in-depth analysis of existing regularization-based methods, providing a better understanding on how they affect to network calibration. Specifically, we have observed that 1) the regularization-based methods can be interpreted as variants of label smoothing, and 2) they do not always behave desirably. Based on the analysis, we introduce a novel loss function, dubbed ACLS, that unifies the merits of existing regularization methods, while avoiding the limitations. We show extensive experimental results for image classification and semantic segmentation on standard benchmarks, including CIFAR10, Tiny-ImageNet, ImageNet, and PASCAL VOC, demonstrating the effectiveness of our loss function.Comment: Accepted to ICCV 2023 (Oral presentation

    Proprioceptive External Torque Learning for Floating Base Robot and its Applications to Humanoid Locomotion

    Full text link
    The estimation of external joint torque and contact wrench is essential for achieving stable locomotion of humanoids and safety-oriented robots. Although the contact wrench on the foot of humanoids can be measured using a force-torque sensor (FTS), FTS increases the cost, inertia, complexity, and failure possibility of the system. This paper introduces a method for learning external joint torque solely using proprioceptive sensors (encoders and IMUs) for a floating base robot. For learning, the GRU network is used and random walking data is collected. Real robot experiments demonstrate that the network can estimate the external torque and contact wrench with significantly smaller errors compared to the model-based method, momentum observer (MOB) with friction modeling. The study also validates that the estimated contact wrench can be utilized for zero moment point (ZMP) feedback control, enabling stable walking. Moreover, even when the robot's feet and the inertia of the upper body are changed, the trained network shows consistent performance with a model-based calibration. This result demonstrates the possibility of removing FTS on the robot, which reduces the disadvantages of hardware sensors. The summary video is available at https://youtu.be/gT1D4tOiKpo.Comment: Accepted by 2023 IROS conferenc

    KitchenScale: Learning to predict ingredient quantities from recipe contexts

    Full text link
    Determining proper quantities for ingredients is an essential part of cooking practice from the perspective of enriching tastiness and promoting healthiness. We introduce KitchenScale, a fine-tuned Pre-trained Language Model (PLM) that predicts a target ingredient's quantity and measurement unit given its recipe context. To effectively train our KitchenScale model, we formulate an ingredient quantity prediction task that consists of three sub-tasks which are ingredient measurement type classification, unit classification, and quantity regression task. Furthermore, we utilized transfer learning of cooking knowledge from recipe texts to PLMs. We adopted the Discrete Latent Exponent (DExp) method to cope with high variance of numerical scales in recipe corpora. Experiments with our newly constructed dataset and recommendation examples demonstrate KitchenScale's understanding of various recipe contexts and generalizability in predicting ingredient quantities. We implemented a web application for KitchenScale to demonstrate its functionality in recommending ingredient quantities expressed in numerals (e.g., 2) with units (e.g., ounce).Comment: Expert Systems with Applications 2023, Demo: http://kitchenscale.korea.ac.kr

    Effect of Resonant Acoustic Powder Mixing on Delay Time of W-KClO4-BaCrO4 Mixtures

    Full text link
    This study investigates the impact of resonant acoustic powder mixing on the delay time of the W-KClO4-BaCrO4 (WKB) mixture and its potential implications for powder and material synthesis. Through thermal analysis, an inverse linear relationship was found between thermal conductivity and delay time, allowing us to use thermal conductivity as a reliable proxy for the delay time. By comparing the thermal conductivity of WKB mixtures mixed manually and using acoustic powder mixer, we found that acoustic powder mixing resulted in minimal deviations in thermal conductivity, proving more uniform mixing. Furthermore, DSC analysis and Sestak-Berggren modeling demonstrated consistent reaction dynamics with a constant activation energy as the reaction progressed in samples mixed using acoustic waves. These findings underscore the critical role of uniform powder mixing in enhancing the thermodynamic quality of the WKB mixture and emphasize the importance of developing novel methods for powder and material synthesis.Comment: 29 pages, 8 figure
    corecore