800 research outputs found

    Modified reverse tapering method to prevent frequency shift of the radiation in the planar undulator

    Get PDF
    This paper presents a modified reverse tapering method to generate a polarized soft x ray in x-ray free-electron lasers (XFELs) with a higher photon power and a shorter undulator length than the simple linear reverse tapering method. In the proposed method, a few untapered planar undulators are added before the simple linear reverse tapering section of the undulator line. This simple modification prevents the frequency shift of the radiation that occurs when the simple linear reverse tapering method is applied to planar undulators. In the proposed method, the total length of planar undulators decreased in spite of the additional untapered undulators. When the modified reverse tapering method is used with four untapered planar undulators, the total length of the planar undulators is 64.6 m. On the other hand, the required length of the planar undulators is 94.6 m when the simple linear reverse tapering method is used. The proposed method gives us a way to generate a soft x-ray pulse (1.24 keV) with a high degree of polarization (>0.99) and radiation power (>30 GW) at the new undulator line with a 10-GeV electron beam in the Pohang Accelerator Laboratory X-ray Free-Electron Laser. This method can be applied in the existing XFELs in the world without any change in the undulator lines. ? 2017 authors. Published by the American Physical Society.111Ysciescopu

    Crystallization and preliminary X-ray crystallographic studies of the ice-binding protein from the Antarctic yeast Leucosporidium sp. AY30. Corrigendum

    Get PDF
    A correction to the article by Park et al. [(2011). Acta Cryst. F67, 800–802]

    Elevation of serum lactate dehydrogenase in patients with pectus excavatum

    Get PDF
    INTRODUCTION: Pectus excavatum is the most common congenital chest wall deformity and the depression of the anterior chest wall, which compresses the internal organs. The aim of the present study is to investigate the effects of pectus excavatum on blood laboratory findings. MATERIAL AND METHODS: From March 2011 to December 2011, 71 patients with pectus excavatum who visited Seoul Saint Mary Hospital for Nuss procedure were reviewed and analyzed. The blood samples were routinely taken at the day before surgery and pectus bar removal was usually performed in 2 to 3 years after Nuss procedure. To investigate the effects on blood laboratory findings, preoperative routine blood laboratory data and postoperative changes of abnormal laboratory data were analyzed. RESULTS: Only lactate dehydrogenase (LDH), one of 26 separate routine laboratory tests, was abnormal and significantly elevated than normal value (age <10, p = 0.008; age ≥10, p < 0.001). However, there was no significant correlation between LDH levels and severities of pectus excavatum. The symmetric subgroup had significantly higher LDH level than the asymmetric subgroup (p <0.001) and there was a significant decrease of LDH level after correction of deformity (p = 0.017). CONCLUSION: In conclusion, only LDH, one of the routine laboratory tests, was significantly elevated than normal value, which was thought to be caused by etiologies of pectus excavatum and the compression of the internal organs. Further studies on LDH including isoenzyme studies in patients with pectus excavatum will be needed, and these studies will provide a deeper and wider comprehension of pectus excavatum

    Replication Protein A Confers Structure-specific Endonuclease Activities to the XPF-ERCC1 and XPG Subunits of Human DNA Repair Excision Nuclease

    Get PDF
    XPF-ERCC1 and XPG proteins are nucleases that are involved in human nucleotide excision repair. In this study, we characterized the structure-specific junction-cutting activities of both nucleases using DNA substrates containing a bubble or loop structure. We found that the junction-cutting activities of XPF-ERCC1 and XPG were greatly stimulated by human replication protein A (RPA), while heterologous single-stranded DNA-binding proteins could not substitute for human RPA. To test for specific interaction between RPA and XPF-ERCC1 as is known to occur between RPA and XPG, we employed a pull-down assay with immobilized "bubble" substrate. We found that the binding of XPF-ERCC1 complex to the bubble substrate was enhanced by RPA, suggesting a possible mechanism for RPA in the excision nuclease system, that is the targeting of the nuclease subunits to their specific sites of action. Furthermore, the RPA-promoted junction cutting by XPF-ERCC1 and XPG nucleases was observed with "loop" substrates as well, raising the possibility that XPF-ERCC1, XPG, and RPA may function in removing loop structures from DNA, independent of the other subunits of the human excinuclease

    Effects of Infrared Radiation and Heat on Human Skin Aging in vivo

    Get PDF
    Sunlight damages human skin, resulting in a wrinkled appearance. Since natural sunlight is polychromatic, its ultimate effects on the human skin are the result of not only the action of each wavelength separately, but also interactions among the many wavelengths, including UV, visible light, and infrared (IR). In direct sunlight, the temperature of human skin rises to about 40°C following the conversion of absorbed IR into heat. So far, our knowledge of the effects of IR radiation or heat on skin aging is limited. Recent work demonstrates that IR and heat exposure each induces cutaneous angiogenesis and inflammatory cellular infiltration, disrupts the dermal extracellular matrix by inducing matrix metalloproteinases, and alters dermal structural proteins, thereby adding to premature skin aging. This review provides a summary of current research on the effects of IR radiation and heat on aging in human skin in vivo

    Human DNA Repair Excision Nuclease: ANALYSIS OF THE ROLES OF THE SUBUNITS INVOLVED IN DUAL INCISIONS BY USING ANTI-XPG AND ANTI-ERCC1 ANTIBODIES

    Get PDF
    Human DNA repair excision nuclease removes DNA damage by incising on both sides of the lesion in a precise manner. The activity requires participation of 16-17 polypeptides. Of these, the XPF.ERCC1 complex and XPG were predicted to carry the nuclease active sites based on studies with the recombinant proteins and the yeast homologs of these proteins. Furthermore, recent work with model (undamaged) substrates have led to predictions of the roles of these proteins in incising 5' or 3' to the lesion. We have used damaged DNA substrates and antibodies to XPG and ERCC1 to test these predictions. Our results reveal that anti-XPG antibodies change the site of 3' incision and at high concentration inhibit the 3' incision without significantly affecting the 5' incision, indicating that XPG makes the 3' incision and further that under this condition 5' incision can occur without 3' incision. In contrast, anti-ERCC1 antibodies inhibit both the 3' and 5' incisions. Using a defined system for excision repair we also demonstrate that the 3' incision can occur without the 5' incision, leading us to conclude that under certain conditions the two incisions can occur independently

    Colorectal Lymphoid Polyposis in a Child

    Get PDF
    Lymphoid polyposis is a lymphoid hyperplasia of the gastrointestinal tract that usually presents as multiple small polyps in the colon during childhood. This should be differentiated from other neoplastic or familial polyposis of the intestine. We report a case of benign lymphoid polyposis of the colon in a 17-month-old boy who presented with perianal fistula and mucosal ulceration. Colon study and rectal examinations showed multiple polyps in the sigmoid colon and rectum. Segmental resection of the sigmoid colon and rectum showed over 100 smallt 3 - 7 mrn) sessile or pedunculated polyps that were diffusely scattered through out the removed segment. The polyps consisted of mature lymphoid tissue with numerous germinal centers, that was located mostly in the lamina propria and submucosa
    corecore