7,686 research outputs found
The Glassy Potts Model
We introduce a Potts model with quenched, frustrated disorder, that enjoys of
a gauge symmetry that forbids spontaneous magnetization, and allows the glassy
phase to extend from down to T=0. We study numerical the 4 dimensional
model with states. We show the existence of a glassy phase, and we
characterize it by studying the probability distributions of an order
parameter, the binder cumulant and the divergence of the overlap
susceptibility. We show that the dynamical behavior of the system is
characterized by aging.Comment: 4 pages including 4 (color) ps figures (all on page 4
On the origin of ultrametricity
In this paper we show that in systems where the probability distribution of
the the overlap is non trivial in the infinity volume limit, the property of
ultrametricity can be proved in general starting from two very simple and
natural assumptions: each replica is equivalent to the others (replica
equivalence or stochastic stability) and all the mutual information about a
pair of equilibrium configurations is encoded in their mutual distance or
overlap (separability or overlap equivalence).Comment: 13 pages, 1 figur
Partition function of the Potts model on self-similar lattices as a dynamical system and multiple transitions
We present an analytic study of the Potts model partition function on two
different types of self-similar lattices of triangular shape with non integer
Hausdorff dimension. Both types of lattices analyzed here are interesting
examples of non-trivial thermodynamics in less than two dimensions. First, the
Sierpinski gasket is considered. It is shown that, by introducing suitable
geometric coefficients, it is possible to reduce the computation of the
partition function to a dynamical system, whose variables are directly
connected to (the arising of) frustration on macroscopic scales, and to
determine the possible phases of the system. The same method is then used to
analyse the Hanoi graph. Again, dynamical system theory provides a very elegant
way to determine the phase diagram of the system. Then, exploiting the analysis
of the basins of attractions of the corresponding dynamical systems, we
construct various examples of self-similar lattices with more than one critical
temperature. These multiple critical temperatures correspond to crossing phases
with different degrees of frustration.Comment: 16 pages, 12 figures, 1 table; title changed, references and
discussion on multiple transitions adde
The mean field theory of spin glasses: the heuristic replica approach and recent rigorous results
The mathematically correct computation of the spin glasses free energy in the
infinite range limit crowns 25 years of mathematic efforts in solving this
model. The exact solution of the model was found many years ago by using a
heuristic approach; the results coming from the heuristic approach were crucial
in deriving the mathematical results. The mathematical tools used in the
rigorous approach are quite different from those of the heuristic approach. In
this note we will review the heuristic approach to spin glasses in the light of
the rigorous results; we will also discuss some conjectures that may be useful
to derive the solution of the model in an alternative way.Comment: 12 pages, 1 figure; lecture at the Flato Colloquia Day, Thursday 27
November, 200
Explicit generation of the branching tree of states in spin glasses
We present a numerical method to generate explicit realizations of the tree
of states in mean-field spin glasses. The resulting study illuminates the
physical meaning of the full replica symmetry breaking solution and provides
detailed information on the structure of the spin-glass phase. A cavity
approach ensures that the method is self-consistent and permits the evaluation
of sophisticated observables, such as correlation functions. We include an
example application to the study of finite-size effects in single-sample
overlap probability distributions, a topic that has attracted considerable
interest recently.Comment: Version accepted for publication in JSTA
Space Time MUSIC: Consistent Signal Subspace Estimation for Wide-band Sensor Arrays
Wide-band Direction of Arrival (DOA) estimation with sensor arrays is an
essential task in sonar, radar, acoustics, biomedical and multimedia
applications. Many state of the art wide-band DOA estimators coherently process
frequency binned array outputs by approximate Maximum Likelihood, Weighted
Subspace Fitting or focusing techniques. This paper shows that bin signals
obtained by filter-bank approaches do not obey the finite rank narrow-band
array model, because spectral leakage and the change of the array response with
frequency within the bin create \emph{ghost sources} dependent on the
particular realization of the source process. Therefore, existing DOA
estimators based on binning cannot claim consistency even with the perfect
knowledge of the array response. In this work, a more realistic array model
with a finite length of the sensor impulse responses is assumed, which still
has finite rank under a space-time formulation. It is shown that signal
subspaces at arbitrary frequencies can be consistently recovered under mild
conditions by applying MUSIC-type (ST-MUSIC) estimators to the dominant
eigenvectors of the wide-band space-time sensor cross-correlation matrix. A
novel Maximum Likelihood based ST-MUSIC subspace estimate is developed in order
to recover consistency. The number of sources active at each frequency are
estimated by Information Theoretic Criteria. The sample ST-MUSIC subspaces can
be fed to any subspace fitting DOA estimator at single or multiple frequencies.
Simulations confirm that the new technique clearly outperforms binning
approaches at sufficiently high signal to noise ratio, when model mismatches
exceed the noise floor.Comment: 15 pages, 10 figures. Accepted in a revised form by the IEEE Trans.
on Signal Processing on 12 February 1918. @IEEE201
On the Effects of Changing the Boundary Conditions on the Ground State of Ising Spin Glasses
We compute and analyze couples of ground states of 3D spin glass systems with
the same quenched noise but periodic and anti-periodic boundary conditions for
different lattice sizes. We discuss the possible different behaviors of the
system, we analyze the average link overlap, the probability distribution of
window overlaps (among ground states computed with different boundary
conditions) and the spatial overlap and link overlap correlation functions. We
establish that the picture based on Replica Symmetry Breaking correctly
describes the behavior of 3D Spin Glasses.Comment: 25 pages with 11 ps figures include
Small Window Overlaps Are Effective Probes of Replica Symmetry Breaking in 3D Spin Glasses
We compute numerically small window overlaps in the three dimensional Edwards
Anderson spin glass. We show that they behave in the way implied by the Replica
Symmetry Breaking Ansatz, that they do not qualitatively differ from the full
volume overlap and do not tend to a trivial function when increasing the
lattice volume. On the contrary we show they are affected by small finite
volume effects, and are interesting tools for the study of the features of the
spin glass phase.Comment: 9 pages plus 5 figure
On Spin-Glass Complexity
We study the quenched complexity in spin-glass mean-field models satisfying
the Becchi-Rouet-Stora-Tyutin supersymmetry. The outcome of such study,
consistent with recent numerical results, allows, in principle, to conjecture
the absence of any supersymmetric contribution to the complexity in the
Sherrington-Kirkpatrick model. The same analysis can be applied to any model
with a Full Replica Symmetry Breaking phase, e.g. the Ising -spin model
below the Gardner temperature. The existence of different solutions, breaking
the supersymmetry, is also discussed.Comment: 4 pages, 2 figures; Text changed in some parts, typos corrected,
Refs. [17],[21] and [22] added, two Refs. remove
- …
