353 research outputs found
Laplace deconvolution and its application to Dynamic Contrast Enhanced imaging
In the present paper we consider the problem of Laplace deconvolution with
noisy discrete observations. The study is motivated by Dynamic Contrast
Enhanced imaging using a bolus of contrast agent, a procedure which allows
considerable improvement in {evaluating} the quality of a vascular network and
its permeability and is widely used in medical assessment of brain flows or
cancerous tumors. Although the study is motivated by medical imaging
application, we obtain a solution of a general problem of Laplace deconvolution
based on noisy data which appears in many different contexts. We propose a new
method for Laplace deconvolution which is based on expansions of the
convolution kernel, the unknown function and the observed signal over Laguerre
functions basis. The expansion results in a small system of linear equations
with the matrix of the system being triangular and Toeplitz. The number of
the terms in the expansion of the estimator is controlled via complexity
penalty. The advantage of this methodology is that it leads to very fast
computations, does not require exact knowledge of the kernel and produces no
boundary effects due to extension at zero and cut-off at . The technique
leads to an estimator with the risk within a logarithmic factor of of the
oracle risk under no assumptions on the model and within a constant factor of
the oracle risk under mild assumptions. The methodology is illustrated by a
finite sample simulation study which includes an example of the kernel obtained
in the real life DCE experiments. Simulations confirm that the proposed
technique is fast, efficient, accurate, usable from a practical point of view
and competitive
Laplace deconvolution on the basis of time domain data and its application to Dynamic Contrast Enhanced imaging
In the present paper we consider the problem of Laplace deconvolution with
noisy discrete non-equally spaced observations on a finite time interval. We
propose a new method for Laplace deconvolution which is based on expansions of
the convolution kernel, the unknown function and the observed signal over
Laguerre functions basis (which acts as a surrogate eigenfunction basis of the
Laplace convolution operator) using regression setting. The expansion results
in a small system of linear equations with the matrix of the system being
triangular and Toeplitz. Due to this triangular structure, there is a common
number of terms in the function expansions to control, which is realized
via complexity penalty. The advantage of this methodology is that it leads to
very fast computations, produces no boundary effects due to extension at zero
and cut-off at and provides an estimator with the risk within a logarithmic
factor of the oracle risk. We emphasize that, in the present paper, we consider
the true observational model with possibly nonequispaced observations which are
available on a finite interval of length which appears in many different
contexts, and account for the bias associated with this model (which is not
present when ). The study is motivated by perfusion imaging
using a short injection of contrast agent, a procedure which is applied for
medical assessment of micro-circulation within tissues such as cancerous
tumors. Presence of a tuning parameter allows to choose the most
advantageous time units, so that both the kernel and the unknown right hand
side of the equation are well represented for the deconvolution. The
methodology is illustrated by an extensive simulation study and a real data
example which confirms that the proposed technique is fast, efficient,
accurate, usable from a practical point of view and very competitive.Comment: 36 pages, 9 figures. arXiv admin note: substantial text overlap with
arXiv:1207.223
Programme BIO 4
Programme Biomed 1Available from INIST (FR), Document Supply Service, under shelf-number : AR 15615 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEMinistere de l'Enseignement Superieur et de la Recherche, 75 - Paris (France)FRFranc
Programme Bio 3
Vol. 1 : Synthese des actions - Vol. 2 : L'heure du doute : Insemination artificielle : enjeux et problemes ethiques - Vol. 3 : European direction of bioethicsAvailable from INIST (FR), Document Supply Service, under shelf-number : AR 15645 (1)b35400006871959; AR 15645 (2); AR 15645 (3) / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEMinistere de l'Enseignement Superieur et de la Recherche, 75 - Paris (France)FRFranc
Seminaire 'images, ecrans, reseaux', Paris, 1992-1993
Available from INIST (FR), Document Supply Service, under shelf-number : AR 15741 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEMinistere de l'Enseignement Superieur et de la Recherche, 75 - Paris (France)FRFranc
Reseau europeen de chercheurs
Available from INIST (FR), Document Supply Service, under shelf-number : AR 15647 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEMinistere de l'Enseignement Superieur et de la Recherche, 75 - Paris (France)FRFranc
Reseau europeen de chercheurs 2 : sociologie des usagers
SIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : AR 15649 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueMinistere de l'Enseignement Superieur et de la Recherche, 75 - Paris (France)FRFranc
L'ethique bomedicale en Europe : inventaire, analyse, information
Programme Biomed 1SIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : AR 15617 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueMinistere de l'Enseignement Superieur et de la Recherche, 75 - Paris (France)FRFranc
- …