5 research outputs found

    Viscosity of High Energy Nuclear Fluids

    Get PDF
    Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.Comment: 6 pages, ReVTeX 4 format, two figures, *.eps forma

    Thermal Time Scales in a Color Glass Condensate

    Full text link
    In a model of relativistic heavy ion collisions wherein the unconfined quark-gluon plasma is condensed into glass, we derive the Vogel-Fulcher-Tammann cooling law. This law is well known to hold true in condensed matter glasses. The high energy plasma is initially created in a very hot negative temperature state and cools down to the Hagedorn glass temperature at an ever decreasing rate. The cooling rate is largely determined by the QCD string tension derived from hadronic Regge trajectories. The ultimately slow relaxation time is a defining characteristic of a color glass condensate.Comment: 5 pages, ReVTeX format, nofigure
    corecore