3 research outputs found

    We never go out of Style: Motion Disentanglement by Subspace Decomposition of Latent Space

    Full text link
    Real-world objects perform complex motions that involve multiple independent motion components. For example, while talking, a person continuously changes their expressions, head, and body pose. In this work, we propose a novel method to decompose motion in videos by using a pretrained image GAN model. We discover disentangled motion subspaces in the latent space of widely used style-based GAN models that are semantically meaningful and control a single explainable motion component. The proposed method uses only a few (≈10)(\approx10) ground truth video sequences to obtain such subspaces. We extensively evaluate the disentanglement properties of motion subspaces on face and car datasets, quantitatively and qualitatively. Further, we present results for multiple downstream tasks such as motion editing, and selective motion transfer, e.g. transferring only facial expressions without training for it.Comment: AI for content creation, CVPRW-202

    Exploring Attribute Variations in Style-based GANs using Diffusion Models

    Full text link
    Existing attribute editing methods treat semantic attributes as binary, resulting in a single edit per attribute. However, attributes such as eyeglasses, smiles, or hairstyles exhibit a vast range of diversity. In this work, we formulate the task of \textit{diverse attribute editing} by modeling the multidimensional nature of attribute edits. This enables users to generate multiple plausible edits per attribute. We capitalize on disentangled latent spaces of pretrained GANs and train a Denoising Diffusion Probabilistic Model (DDPM) to learn the latent distribution for diverse edits. Specifically, we train DDPM over a dataset of edit latent directions obtained by embedding image pairs with a single attribute change. This leads to latent subspaces that enable diverse attribute editing. Applying diffusion in the highly compressed latent space allows us to model rich distributions of edits within limited computational resources. Through extensive qualitative and quantitative experiments conducted across a range of datasets, we demonstrate the effectiveness of our approach for diverse attribute editing. We also showcase the results of our method applied for 3D editing of various face attributes.Comment: Neurips Workshop on Diffusion Models 202

    Strata-NeRF : Neural Radiance Fields for Stratified Scenes

    Full text link
    Neural Radiance Field (NeRF) approaches learn the underlying 3D representation of a scene and generate photo-realistic novel views with high fidelity. However, most proposed settings concentrate on modelling a single object or a single level of a scene. However, in the real world, we may capture a scene at multiple levels, resulting in a layered capture. For example, tourists usually capture a monument's exterior structure before capturing the inner structure. Modelling such scenes in 3D with seamless switching between levels can drastically improve immersive experiences. However, most existing techniques struggle in modelling such scenes. We propose Strata-NeRF, a single neural radiance field that implicitly captures a scene with multiple levels. Strata-NeRF achieves this by conditioning the NeRFs on Vector Quantized (VQ) latent representations which allow sudden changes in scene structure. We evaluate the effectiveness of our approach in multi-layered synthetic dataset comprising diverse scenes and then further validate its generalization on the real-world RealEstate10K dataset. We find that Strata-NeRF effectively captures stratified scenes, minimizes artifacts, and synthesizes high-fidelity views compared to existing approaches.Comment: ICCV 2023, Project Page: https://ankitatiisc.github.io/Strata-NeRF
    corecore