3 research outputs found

    Beach litter sources around Nuuk, Greenland: An analysis by UArctic summer school graduate course students

    Get PDF
    Modeling studies illustrate the potential for long-range transport of plastics into the Arctic, although the degree to which this occurs remains relatively undocumented. We utilised a teaching exercise at a UArctic summer school graduate course in Nuuk, Greenland to conduct a preliminary in-depth analysis of beach litter sources in the Nuup Kangerlua fjord. Students and instructors collected and analysed 1800 litter items weighing 200 kg from one location in the fjord and another at its mouth. The results suggest a predominance of local sources to macrolitter, rather than long-range transport from Europe. Fisheries-related items and rope were common. Packaging which could be identified was largely suspected to be products distributed in Greenland, and soft plastics, which rarely disperse far from its source, were also common. The results suggest local measures to reduce mismanaged waste and emissions from fisheries are important for reducing marine litter in West Greenland.publishedVersio

    Temporal Trends in Marine Litter at Three Stations of the HAUSGARTEN Observatory in the Arctic Deep Sea

    Get PDF
    The deep sea is a major sink for debris; however, temporal changes and underlying mechanisms of litter accumulation on the seafloor remain unclear. Photographic surveys at the long-term ecological research (LTER) observatory HAUSGARTEN, in the eastern Fram Strait, have enabled the assessment of spatial and temporal variability of seafloor litter in the Arctic. Previous studies of time-series data (2002–2014) reported an increase in litter quantities from the northernmost and central stations. Here, we extended the analysis by three years until 2017 and included data from the southernmost station. A total of 16,157 images covering 60.5 km2 were analyzed and combined with previous studies, to determine litter density, type and size compositions. Moreover, the interaction of litter with epibenthic megafauna was evaluated. Indicators of local maritime traffic, fisheries activity and summer sea ice extent were examined as potential drivers. The mean annual litter density ranged between 813 ± 525 (SEM) and 6,717 ± 2,044 (SEM) items km–2. Litter density clearly increased over time, and the northernmost station experienced the strongest increase. Plastics dominated at two of the stations whereas the northern station harbored mainly glass. Small-sized items accounted for 63%. Interaction with epibenthic fauna was frequent, especially with sessile organisms. Litter densities correlated with fishing and tourism vessel abundance, but no correlation was found with summer sea ice extent. This 15-year record of marine litter shows that even secluded Arctic ecosystems become increasingly subject to plastic pollution and that it will likely continue in the face of growing global plastic production rates and ineffective waste management policies
    corecore