92 research outputs found

    Dynamic Genomes of Eukaryotes and the Maintenance of Genomic Integrity

    Get PDF
    Many biologists assume that eukaryotic genomes are transmitted stably between generations with only minor variations. Yet, this presumed constancy is at odds with data indicating that eukaryotic genomes are dynamic, varying extensively in content among many different lineages. Thus, rather than being constant, genomes vary considerably within individuals during their lifetimes

    Genome Dynamics are Influenced by Food Source in \u3ci\u3eAllogromia laticollaris\u3c/i\u3e Strain CSH (Foraminifera)

    Get PDF
    Across the eukaryotic tree of life, genomes vary within populations and within individuals during their life cycle. Understanding intraspecific genome variation in diverse eukaryotes is key to elucidating the factors that underlie this variation. Here, we characterize genome dynamics during the life cycle of Allogromia laticollaris strain CSH, a member of the Foraminifera, using fluorescence microscopy and reveal extensive variation in nuclear size and DNA content. Both nuclear size and DNA content are tightly correlated across a 700-fold range in cell volume. In contrast to models in yeast where nuclear size is determined solely by cell size, the relationship in A. laticollaris CSH differs according to both life cycle stage and food source. Feeding A. laticollaris CSH a diet that includes algae results in a 2-fold increase in DNA content in reproductive cells compared with a diet of bacteria alone. This difference in DNA content likely corresponds to increased fecundity, as reproduction occurs through segregation of the polyploid nucleus into numerous daughter nuclei. Environmentally mediated variation in DNA content may be a widespread phenomenon, as it has been previously reported in the plant flax and the flagellate Euglena. We hypothesize that DNA content is influenced by food in other single-celled eukaryotes with ploidy cycles and that this genome flexibility may enable these eukaryotes to maximize fitness across changing environmental conditions

    The Dynamic Nature of Eukaryotic Genomes

    Get PDF
    Analyses of diverse eukaryotes reveal that genomes are dynamic, sometimes dramatically so. In numerous lineages across the eukaryotic tree of life, DNA content varies within individuals throughout life cycles and among individuals within species. Discovery of examples of genome dynamism is accelerating as genome sequences are completed from diverse eukaryotes. Though much is known about genomes in animals, fungi, and plants, these lineages represent only 3 of the 60-200 lineages of eukaryotes. Here, we discuss diverse genomic strategies in exemplar eukaryotic lineages, including numerous microbial eukaryotes, to reveal dramatic variation that challenges established views of genome evolution. For example, in the life cycle of some members of the radiolaria, ploidy increases from haploid (N) to approximately 1,000N, whereas intrapopulation variability of the enteric parasite Entamoeba ranges from 4N to 40N. Variation has also been found within our own species, with substantial differences in both gene content and chromosome lengths between individuals. Data on the dynamic nature of genomes shift the perception of the genome from being fixed and characteristic of a species (typological) to plastic due to variation within and between species

    Molecular Data are Transforming Hypotheses on the Origin and Diversification of Eukaryotes

    Get PDF
    The explosion of molecular data has transformed hypotheses on both the origin of eukaryotes and the structure of the eukaryotic tree of life. Early ideas about the evolution of eukaryotes arose through analyses of morphology by light microscopy and, later, electron microscopy. Though such studies have proven powerful at resolving more recent events, theories on origins and diversification of eukaryotic life have been substantially revised in light of analyses of molecular data including gene and, increasingly, whole-genome sequences. By combining these approaches, progress has been made in elucidating the origin and diversification of eukaryotes. Yet many aspects of the evolution of eukaryotic life remain to be illuminated

    Turning the Crown Upside Down: Gene Tree Parsimony Roots the Eukaryotic Tree of Life

    Get PDF
    The first analyses of gene sequence data indicated that the eukaryotic tree of life consisted of a long stem of microbial groups topped by a crown-containing plants, animals, and fungi and their microbial relatives. Although more recent multigene concatenated analyses have refined the relationships among the many branches of eukaryotes, the root of the eukaryotic tree of life has remained elusive. Inferring the root of extant eukaryotes is challenging because of the age of the group (∼1.7-2.1 billion years old), tremendous heterogeneity in rates of evolution among lineages, and lack of obvious outgroups for many genes. Here, we reconstruct a rooted phylogeny of extant eukaryotes based on minimizing the number of duplications and losses among a collection of gene trees. This approach does not require outgroup sequences or assumptions of orthology among sequences. We also explore the impact of taxon and gene sampling and assess support for alternative hypotheses for the root. Using 20 gene trees from 84 diverse eukaryotic lineages, this approach recovers robust eukaryotic clades and reveals evidence for a eukaryotic root that lies between the Opisthokonta (animals, fungi and their microbial relatives) and all remaining eukaryotes

    Human-Associated Microbial Signatures: Examining Their Predictive Value

    Get PDF
    SummaryHost-associated microbial communities are unique to individuals, affect host health, and correlate with disease states. Although advanced technologies capture detailed snapshots of microbial communities, high within- and between-subject variation hampers discovery of microbial signatures in diagnostic or forensic settings. We suggest turning to machine learning and discuss key directions toward harnessing human-associated microbial signatures

    Evaluating Support for the Current Classification of Eukaryotic Diversity

    Get PDF
    Perspectives on the classification of eukaryotic diversity have changed rapidly in recent years, as the four eukaryotic groups within the five-kingdom classification—plants, animals, fungi, and protists—have been transformed through numerous permutations into the current system of six “supergroups.” The intent of the supergroup classification system is to unite microbial and macroscopic eukaryotes based on phylogenetic inference. This supergroup approach is increasing in popularity in the literature and is appearing in introductory biology textbooks. We evaluate the stability and support for the current six-supergroup classification of eukaryotes based on molecular genealogies. We assess three aspects of each supergroup: (1) the stability of its taxonomy, (2) the support for monophyly (single evolutionary origin) in molecular analyses targeting a supergroup, and (3) the support for monophyly when a supergroup is included as an out-group in phylogenetic studies targeting other taxa. Our analysis demonstrates that supergroup taxonomies are unstable and that support for groups varies tremendously, indicating that the current classification scheme of eukaryotes is likely premature. We highlight several trends contributing to the instability and discuss the requirements for establishing robust clades within the eukaryotic tree of life

    Bacterial diversification through geological time

    Get PDF
    Numerous studies have estimated plant and animal diversification dynamics; however, no comparable rigorous estimates exist for bacteria—the most ancient and widespread form of life on Earth. Here, we analyse phylogenies comprising up to 448,112 bacterial lineages to reconstruct global bacterial diversification dynamics. To handle such large phylogenies, we developed methods based on the statistical properties of infinitely large trees. We further analysed sequencing data from 60 environmental studies to determine the fraction of extant bacterial diversity missing from the phylogenies—a crucial parameter for estimating speciation and extinction rates. We estimate that there are about 1.4–1.9 million extant bacterial lineages when lineages are defined by 99% similarity in the 16S ribosomal RNA gene, and that bacterial diversity has been continuously increasing over the past 1 billion years (Gyr). Recent bacterial extinction rates are estimated at 0.03–0.05 per lineage per million years (lineage^(–1) Myr^(–1)), and are only slightly below estimated recent bacterial speciation rates. Most bacterial lineages ever to have inhabited this planet are estimated to be extinct. Our findings disprove the notion that bacteria are unlikely to go extinct, and provide a valuable perspective on the evolutionary history of a domain of life with a sparse and cryptic fossil record

    Bacterial diversification through geological time

    Get PDF
    Numerous studies have estimated plant and animal diversification dynamics; however, no comparable rigorous estimates exist for bacteria—the most ancient and widespread form of life on Earth. Here, we analyse phylogenies comprising up to 448,112 bacterial lineages to reconstruct global bacterial diversification dynamics. To handle such large phylogenies, we developed methods based on the statistical properties of infinitely large trees. We further analysed sequencing data from 60 environmental studies to determine the fraction of extant bacterial diversity missing from the phylogenies—a crucial parameter for estimating speciation and extinction rates. We estimate that there are about 1.4–1.9 million extant bacterial lineages when lineages are defined by 99% similarity in the 16S ribosomal RNA gene, and that bacterial diversity has been continuously increasing over the past 1 billion years (Gyr). Recent bacterial extinction rates are estimated at 0.03–0.05 per lineage per million years (lineage^(–1) Myr^(–1)), and are only slightly below estimated recent bacterial speciation rates. Most bacterial lineages ever to have inhabited this planet are estimated to be extinct. Our findings disprove the notion that bacteria are unlikely to go extinct, and provide a valuable perspective on the evolutionary history of a domain of life with a sparse and cryptic fossil record
    corecore