15 research outputs found

    Text2Cohort: Facilitating Intuitive Access to Biomedical Data with Natural Language Cohort Discovery

    Full text link
    The Imaging Data Commons (IDC) is a cloud-based database that provides researchers with open access to cancer imaging data, with the goal of facilitating collaboration. However, cohort discovery within the IDC database has a significant technical learning curve. Recently, large language models (LLM) have demonstrated exceptional utility for natural language processing tasks. We developed Text2Cohort, a LLM-powered toolkit to facilitate user-friendly natural language cohort discovery in the IDC. Our method translates user input into IDC queries using grounding techniques and returns the query's response. We evaluate Text2Cohort on 50 natural language inputs, from information extraction to cohort discovery. Our toolkit successfully generated responses with an 88% accuracy and 0.94 F1 score. We demonstrate that Text2Cohort can enable researchers to discover and curate cohorts on IDC with high levels of accuracy using natural language in a more intuitive and user-friendly way.Comment: 5 pages, 3 figures, 2 table

    SegViz: A federated-learning based framework for multi-organ segmentation on heterogeneous data sets with partial annotations

    Full text link
    Segmentation is one of the most primary tasks in deep learning for medical imaging, owing to its multiple downstream clinical applications. However, generating manual annotations for medical images is time-consuming, requires high skill, and is an expensive effort, especially for 3D images. One potential solution is to aggregate knowledge from partially annotated datasets from multiple groups to collaboratively train global models using Federated Learning. To this end, we propose SegViz, a federated learning-based framework to train a segmentation model from distributed non-i.i.d datasets with partial annotations. The performance of SegViz was compared against training individual models separately on each dataset as well as centrally aggregating all the datasets in one place and training a single model. The SegViz framework using FedBN as the aggregation strategy demonstrated excellent performance on the external BTCV set with dice scores of 0.93, 0.83, 0.55, and 0.75 for segmentation of liver, spleen, pancreas, and kidneys, respectively, significantly (p<0.05p<0.05) better (except spleen) than the dice scores of 0.87, 0.83, 0.42, and 0.48 for the baseline models. In contrast, the central aggregation model significantly (p<0.05p<0.05) performed poorly on the test dataset with dice scores of 0.65, 0, 0.55, and 0.68. Our results demonstrate the potential of the SegViz framework to train multi-task models from distributed datasets with partial labels. All our implementations are open-source and available at https://anonymous.4open.science/r/SegViz-B74

    A framework for dynamically training and adapting deep reinforcement learning models to different, low-compute, and continuously changing radiology deployment environments

    Full text link
    While Deep Reinforcement Learning has been widely researched in medical imaging, the training and deployment of these models usually require powerful GPUs. Since imaging environments evolve rapidly and can be generated by edge devices, the algorithm is required to continually learn and adapt to changing environments, and adjust to low-compute devices. To this end, we developed three image coreset algorithms to compress and denoise medical images for selective experience replayed-based lifelong reinforcement learning. We implemented neighborhood averaging coreset, neighborhood sensitivity-based sampling coreset, and maximum entropy coreset on full-body DIXON water and DIXON fat MRI images. All three coresets produced 27x compression with excellent performance in localizing five anatomical landmarks: left knee, right trochanter, left kidney, spleen, and lung across both imaging environments. Maximum entropy coreset obtained the best performance of 11.97±12.0211.97\pm 12.02 average distance error, compared to the conventional lifelong learning framework's 19.24±50.7719.24\pm 50.77

    Multi-environment lifelong deep reinforcement learning for medical imaging

    Full text link
    Deep reinforcement learning(DRL) is increasingly being explored in medical imaging. However, the environments for medical imaging tasks are constantly evolving in terms of imaging orientations, imaging sequences, and pathologies. To that end, we developed a Lifelong DRL framework, SERIL to continually learn new tasks in changing imaging environments without catastrophic forgetting. SERIL was developed using selective experience replay based lifelong learning technique for the localization of five anatomical landmarks in brain MRI on a sequence of twenty-four different imaging environments. The performance of SERIL, when compared to two baseline setups: MERT(multi-environment-best-case) and SERT(single-environment-worst-case) demonstrated excellent performance with an average distance of 9.90±7.359.90\pm7.35 pixels from the desired landmark across all 120 tasks, compared to 10.29±9.0710.29\pm9.07 for MERT and 36.37±22.4136.37\pm22.41 for SERT(p<0.05p<0.05), demonstrating the excellent potential for continuously learning multiple tasks across dynamically changing imaging environments

    ISLE: An Intelligent Streaming Framework for High-Throughput AI Inference in Medical Imaging

    Full text link
    As the adoption of Artificial Intelligence (AI) systems within the clinical environment grows, limitations in bandwidth and compute can create communication bottlenecks when streaming imaging data, leading to delays in patient care and increased cost. As such, healthcare providers and AI vendors will require greater computational infrastructure, therefore dramatically increasing costs. To that end, we developed ISLE, an intelligent streaming framework for high-throughput, compute- and bandwidth- optimized, and cost effective AI inference for clinical decision making at scale. In our experiments, ISLE on average reduced data transmission by 98.02% and decoding time by 98.09%, while increasing throughput by 2,730%. We show that ISLE results in faster turnaround times, and reduced overall cost of data, transmission, and compute, without negatively impacting clinical decision making using AI systems.Comment: 5 pages, 3 figures, 3 table
    corecore