240 research outputs found
Nanoparticle amount, and not size, determines chain alignment and nonlinear hardening in polymer nanocomposites
Polymer nanocomposites-materials in which a polymer matrix is blended with nanoparticles (or fillers)-strengthen under sufficiently large strains. Such strain hardening is critical to their function, especially for materials that bear large cyclic loads such as car tires or bearing sealants. Although the reinforcement (i.e., the increase in the linear elasticity) by the addition of filler particles is phenomenologically understood, considerably less is known about strain hardening (the nonlinear elasticity). Here, we elucidate the molecular origin of strain hardening using uniaxial tensile loading, microspectroscopy of polymer chain alignment, and theory. The strain-hardening behavior and chain alignment are found to depend on the volume fraction, but not on the size of nanofillers. This contrasts with reinforcement, which depends on both volume fraction and size of nanofillers, potentially allowing linear and nonlinear elasticity of nanocomposites to be tuned independently.This work is part of the research programme βUnderstanding the viscoelasticity of elastomer based nanocompositesβ of the Stichting voor Fundamenteel Onderzoek der Materie, which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Calmodulin is responsible for Ca2+-dependent regulation of TRPA1 channels
TRPA1 is a Ca2+-permeable ion channel involved in many sensory disorders such as pain, itch and neuropathy. Notably, the function of TRPA1 depends on Ca2+, with low Ca2+ potentiating and high Ca2+ inactivating TRPA1. However, it remains unknown how Ca2+ exerts such contrasting effects. Here, we show that Ca2+ regulates TRPA1 through calmodulin, which binds to TRPA1 in a Ca2+-dependent manner. Calmodulin binding enhanced TRPA1 sensitivity and Ca2+-evoked potentiation of TRPA1 at low Ca2+, but inhibited TRPA1 sensitivity and promoted TRPA1 desensitization at high Ca2+. Ca2+-dependent potentiation and inactivation of TRPA1 were selectively prevented by disrupting the interaction of the carboxy-lobe of calmodulin with a calmodulin-binding domain in the C-terminus of TRPA1. Calmodulin is thus a critical Ca2+ sensor enabling TRPA1 to respond to diverse Ca2+ signals distinctly
Osteoinduction of Human Mesenchymal Stem Cells by Bioactive Composite Scaffolds without Supplemental Osteogenic Growth Factors
The development of a new family of implantable bioinspired materials is a focal point of bone tissue engineering. Implant surfaces that better mimic the natural bone extracellular matrix, a naturally nano-composite tissue, can stimulate stem cell differentiation towards osteogenic lineages in the absence of specific chemical treatments. Herein we describe a bioactive composite nanofibrous scaffold, composed of poly-caprolactone (PCL) and nano-sized hydroxyapatite (HA) or beta-tricalcium phosphate (TCP), which was able to support the growth of human bone marrow mesenchymal stem cells (hMSCs) and guide their osteogenic differentiation at the same time. Morphological and physical/chemical investigations were carried out by scanning, transmission electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, mechanical and wettability analysis. Upon culturing hMSCs on composite nanofibers, we found that the incorporation of either HA or TCP into the PCL nanofibers did not affect cell viability, meanwhile the presence of the mineral phase increases the activity of alkaline phosphatase (ALP), an early marker of bone formation, and mRNA expression levels of osteoblast-related genes, such as the Runt-related transcription factor 2 (Runx-2) and bone sialoprotein (BSP), in total absence of osteogenic supplements. These results suggest that both the nanofibrous structure and the chemical composition of the scaffolds play a role in regulating the osteogenic differentiation of hMSCs
HIV Incidence in Rural South Africa: Comparison of Estimates from Longitudinal Surveillance and Cross-Sectional cBED Assay Testing
The original publication is available at http:/www.plosone.orgBackground: The BED IgG-Capture Enzyme Immunoassay (cBED assay), a test of recent HIV infection, has been used to estimate HIV incidence in cross-sectional HIV surveys. However, there has been concern that the assay overestimates HIV incidence to an unknown extent because it falsely classifies some individuals with non-recent HIV infections as recently infected. We used data from a longitudinal HIV surveillance in rural South Africa to measure the fraction of people with nonrecent HIV infection who are falsely classified as recently HIV-infected by the cBED assay (the long-term false-positive ratio (FPR)) and compared cBED assay-based HIV incidence estimates to longitudinally measured HIV incidence. Methodology/Principal Findings: We measured the long-term FPR in individuals with two positive HIV tests (in the HIV surveillance, 2003-2006) more than 306 days apart (sample size n = 1,065). We implemented four different formulae to calculate HIV incidence using cBED assay testing (n = 11,755) and obtained confidence intervals (CIs) by directly calculating the central 95th percentile of incidence values. We observed 4,869 individuals over 7,685 person-years for longitudinal HIV incidence estimation. The long-term FPR was 0.0169 (95% CI 0.0100-0.0266). Using this FPR, the cross-sectional cBED-based HIV incidence estimates (per 100 people per year) varied between 3.03 (95% CI 2.44-3.63) and 3.19 (95% CI 2.57-3.82), depending on the incidence formula. Using a long-term FPR of 0.0560 based on previous studies, HIV incidence estimates varied between 0.65 (95% CI 0.00-1.32) and 0.71 (95% CI 0.00-1.43). The longitudinally measured HIV incidence was 3.09 per 100 people per year (95% CI 2.69-3.52), after adjustment to the sex-age distribution of the sample used in cBED assay-based estimation. Conclusions/Significance: In a rural community in South Africa with high HIV prevalence, the long-term FPR of the cBED assay is substantially lower than previous estimates. The cBED assay performs well in HIV incidence estimation if the locally measured long-term FPR is used, but significantly underestimates incidence when a FPR estimate based on previous studies in other settings is used. Β© 2008 BΓ€rnighausen et al.Publishers' Versio
Glycans in Sera of Amyotrophic Lateral Sclerosis Patients and Their Role in Killing Neuronal Cells
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by degeneration of upper and lower motor neurons. To date, glycosylation patterns of glycoproteins in fluids of ALS patients have not been described. Moreover, the aberrant glycosylation related to the pathogenesis of other neurodegenerative diseases encouraged us to explore the glycome of ALS patient sera. We found high levels of sialylated glycans and low levels of core fucosylated glycans in serum-derived N-glycans of patients with ALS, compared to healthy volunteer sera. Based on these results, we analyzed the IgG Fc N297-glycans, as IgG are major serum glycoproteins affected by sialylation or core fucosylation and are found in the motor cortex of ALS patients. The analyses revealed a distinct glycan, A2BG2, in IgG derived from ALS patient sera (ALS-IgG). This glycan increases the affinity of IgG to CD16 on effector cells, consequently enhancing Antibody-Dependent Cellular Cytotoxicity (ADCC). Therefore, we explore whether the Fc-N297-glycans of IgG may be involved in ALS disease. Immunostaining of brain and spinal cord tissues revealed over-expression of CD16 and co-localization of intact ALS-IgG with CD16 and in brain with activated microglia of G93A-SOD1 mice. Intact ALS-IgG enhanced effector cell activation and ADCC reaction in comparison to sugar-depleted or control IgG. ALS-IgG were localized in the synapse between brain microglia and neurons of G93A-SOD1 mice, manifesting a promising in vivo ADCC reaction. Therefore, glycans of ALS-IgG may serve as a biomarker for the disease and may be involved in neuronal damage
Facilitating Next-Generation Pre-Exposure Prophylaxis Clinical Trials Using HIV Recent Infection Assays: A Consensus Statement from the Forum HIV Prevention Trial Design Project
Standard-of-care HIV pre-exposure prophylaxis (PrEP) is highly efficacious, but uptake of and persistence on a daily oral pill is low in many settings. Evaluation of alternate PrEP products will require innovation to avoid the unpractically large sample sizes in noninferiority trials. We propose estimating HIV incidence in people not on PrEP as an external counterfactual to which on-PrEP incidence in trial subjects can be compared. HIV recent infection testing algorithms (RITAs), such as the limiting antigen avidity assay plus viral load used on specimens from untreated HIV positive people identified during screening, is one possible approach. Its feasibility is partly dependent on the sample size needed to ensure adequate power, which is impacted by RITA performance, the number of recent infections identified, the expected efficacy of the intervention, and other factors. Screening sample sizes to support detection of an 80% reduction in incidence for 3 key populations are more modest, and comparable to the number of participants in recent phase III PrEP trials. Sample sizes would be significantly larger in populations with lower incidence, where the false recency rate is higher or if PrEP efficacy is expected to be lower. Our proposed counterfactual approach appears to be feasible, offers high statistical power, and is nearly contemporaneous with the on-PrEP population. It will be important to monitor the performance of this approach during new product development for HIV prevention. If successful, it could be a model for preventive HIV vaccines and prevention of other infectious diseases
Regulation of STIM1 and SOCE by the Ubiquitin-Proteasome System (UPS)
The ubiquitin proteasome system (UPS) mediates the majority of protein degradation in eukaryotic cells. The UPS has recently emerged as a key degradation pathway involved in synapse development and function. In order to better understand the function of the UPS at synapses we utilized a genetic and proteomic approach to isolate and identify novel candidate UPS substrates from biochemically purified synaptic membrane preparations. Using these methods, we have identified Stromal interacting molecule 1 (STIM1). STIM1 is as an endoplasmic reticulum (ER) calcium sensor that has been shown to regulate store-operated Ca2+ entry (SOCE). We have characterized STIM1 in neurons, finding STIM1 is expressed throughout development with stable, high expression in mature neurons. As in non-excitable cells, STIM1 is distributed in a membranous and punctate fashion in hippocampal neurons. In addition, a population of STIM1 was found to exist at synapses. Furthermore, using surface biotinylation and live-cell labeling methods, we detect a subpopulation of STIM1 on the surface of hippocampal neurons. The role of STIM1 as a regulator of SOCE has typically been examined in non-excitable cell types. Therefore, we examined the role of the UPS in STIM1 and SOCE function in HEK293 cells. While we find that STIM1 is ubiquitinated, its stability is not altered by proteasome inhibitors in cells under basal conditions or conditions that activate SOCE. However, we find that surface STIM1 levels and thapsigargin (TG)-induced SOCE are significantly increased in cells treated with proteasome inhibitors. Additionally, we find that the overexpression of POSH (Plenty of SH3β²s), an E3 ubiquitin ligase recently shown to be involved in the regulation of Ca2+ homeostasis, leads to decreased STIM1 surface levels. Together, these results provide evidence for previously undescribed roles of the UPS in the regulation of STIM1 and SOCE function
Force Generation upon T Cell Receptor Engagement
T cells are major players of adaptive immune response in mammals. Recognition of
an antigenic peptide in association with the major histocompatibility complex at
the surface of an antigen presenting cell (APC) is a specific and sensitive
process whose mechanism is not fully understood. The potential contribution of
mechanical forces in the T cell activation process is increasingly debated,
although these forces are scarcely defined and hold only limited experimental
evidence. In this work, we have implemented a biomembrane force probe (BFP)
setup and a model APC to explore the nature and the characteristics of the
mechanical forces potentially generated upon engagement of the T cell receptor
(TCR) and/or lymphocyte function-associated antigen-1 (LFA-1). We show that upon
contact with a model APC coated with antibodies towards TCR-CD3, after a short
latency, the T cell developed a timed sequence of pushing and pulling forces
against its target. These processes were defined by their initial constant
growth velocity and loading rate (force increase per unit of time). LFA-1
engagement together with TCR-CD3 reduced the growing speed during the pushing
phase without triggering the same mechanical behavior when engaged alone.
Intracellular Ca2+ concentration
([Ca2+]i) was monitored simultaneously
to verify the cell commitment in the activation process.
[Ca2+]i increased a few tens of seconds
after the beginning of the pushing phase although no strong correlation appeared
between the two events. The pushing phase was driven by actin polymerization.
Tuning the BFP mechanical properties, we could show that the loading rate during
the pulling phase increased with the target stiffness. This indicated that a
mechanosensing mechanism is implemented in the early steps of the activation
process. We provide here the first quantified description of force generation
sequence upon local bidimensional engagement of TCR-CD3 and discuss its
potential role in a T cell mechanically-regulated activation process
ORAI1 Genetic Polymorphisms Associated with the Susceptibility of Atopic Dermatitis in Japanese and Taiwanese Populations
Atopic dermatitis is a chronic inflammatory skin disease. Multiple genetic and environmental factors are thought to be responsible for susceptibility to AD. In this study, we collected 2,478 DNA samples including 209 AD patients and 729 control subjects from Taiwanese population and 513 AD patients and 1027 control subject from Japanese population for sequencing and genotyping ORAI1. A total of 14 genetic variants including 3 novel single-nucleotide polymorphisms (SNPs) in the ORAI1 gene were identified. Our results indicated that a non-synonymous SNP (rs3741596, Ser218Gly) associated with the susceptibility of AD in the Japanese population but not in the Taiwanese population. However, there is another SNP of ORAI1 (rs3741595) associated with the risk of AD in the Taiwanese population but not in the Japanese population. Taken together, our results indicated that genetic polymorphisms of ORAI1 are very likely to be involved in the susceptibility of AD
Activated iNKT Cells Promote Memory CD8+ T Cell Differentiation during Viral Infection
Ξ±-galactosylceramide (Ξ±-GalCer) is the prototypical lipid ligand for invariant NKT cells. Recent studies have proposed that Ξ±-GalCer is an effective adjuvant in vaccination against a range of immune challenges, however its mechanism of action has not been completely elucidated. A variety of delivery methods have been examined including pulsing dendritic cells with Ξ±-GalCer to optimize the potential of Ξ±-GalCer. These methods are currently being used in a variety of clinical trials in patients with advanced cancer but cannot be used in the context of vaccine development against pathogens due to their complexity. Using a simple delivery method, we evaluated Ξ±-GalCer adjuvant properties, using the mouse model for cytomegalovirus (MCMV). We measured several key parameters of the immune response to MCMV, including inflammation, effector, and central memory CD8+ T cell responses. We found that Ξ±-GalCer injection at the time of the infection decreases viral titers, alters the kinetics of the inflammatory response, and promotes both increased frequencies and numbers of virus-specific memory CD8+ T cells. Overall, our data suggest that iNKT cell activation by Ξ±-GalCer promotes the development of long-term protective immunity through increased fitness of central memory CD8+ T cells, as a consequence of reduced inflammation
- β¦