235 research outputs found

    A ‘higher order' of telomere regulation: telomere heterochromatin and telomeric RNAs

    Get PDF
    Protection of chromosome ends from DNA repair and degradation activities is mediated by specialized protein complexes bound to telomere repeats. Recently, it has become apparent that epigenetic regulation of the telomric chromatin template critically impacts on telomere function and telomere-length homeostasis from yeast to man. Across all species, telomeric repeats as well as the adjacent subtelomeric regions carry features of repressive chromatin. Disruption of this silent chromatin environment results in loss of telomere-length control and increased telomere recombination. In turn, progressive telomere loss reduces chromatin compaction at telomeric and subtelomeric domains. The recent discoveries of telomere chromatin regulation during early mammalian development, as well as during nuclear reprogramming, further highlights a central role of telomere chromatin changes in ontogenesis. In addition, telomeres were recently shown to generate long, non-coding RNAs that remain associated to telomeric chromatin and will provide new insights into the regulation of telomere length and telomere chromatin. In this review, we will discuss the epigenetic regulation of telomeres across species, with special emphasis on mammalian telomeres. We will also discuss the links between epigenetic alterations at mammalian telomeres and telomere-associated diseases

    Localization of chromosomal DNA sequences homologous to ribosomal gene type I insertion DNA in Drosophila melanogaster

    Full text link
    Chromosomal sites which have DNA homology to the 1 kb (kilobase pair) Bam HI restrictable fragment of the 5 kb type I insertion present in many ribosomal genes in Drosophila melanogaster , were identified by using in situ hybridization and autoradiography. XX and XY complements of polytene chromosomes showed the nucleolus and chromocenter to be heavily labeled. Of the light label over euchromatic regions, the 102C band of chromosome 4 labeled particularly intensely. In mitotic XX and XY complements, the NORs (nucleolus organizer regions) of both sex chromosomes labeled as did the centromeric heterochromatin of autosomes. Label also appeared less frequently over telomeric and euchromatic regions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47555/1/438_2004_Article_BF00328069.pd

    Distinct Differences in Chromatin Structure at Subtelomeric X and Y' Elements in Budding Yeast

    Get PDF
    In Saccharomyces cerevisiae, all ends of telomeric DNA contain telomeric repeats of (TG1–3), but the number and position of subtelomeric X and Y' repeat elements vary. Using chromatin immunoprecipitation and genome-wide analyses, we here demonstrate that the subtelomeric X and Y' elements have distinct structural and functional properties. Y' elements are transcriptionally active and highly enriched in nucleosomes, whereas X elements are repressed and devoid of nucleosomes. In contrast to X elements, the Y' elements also lack the classical hallmarks of heterochromatin, such as high Sir3 and Rap1 occupancy as well as low levels of histone H4 lysine 16 acetylation. Our analyses suggest that the presence of X and Y' elements govern chromatin structure and transcription activity at individual chromosome ends

    Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres

    Full text link
    Long interspersed element-1 (LINE-1 or L1) elements are abundant, non-long-terminal-repeat (non-LTR) retrotransposons that comprise 17% of human DNA(1). The average human genome contains similar to 80-100 retrotransposition- competent L1s (ref. 2), and they mobilize by a process that uses both the L1 endonuclease and reverse transcriptase, termed target-site primed reverse transcription(3-5). We have previously reported an efficient, endonuclease-independent L1 retrotransposition pathway (ENi) in certain Chinese hamster ovary (CHO) cell lines that are defective in the non-homologous end-joining (NHEJ) pathway of DNA double-strand-break repair(6). Here we have characterized ENi retrotransposition events generated in V3 CHO cells, which are deficient in DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity and have both dysfunctional telomeres and an NHEJ defect. Notably, similar to 30% of ENi retrotransposition events insert in an orientation-specific manner adjacent to a perfect telomere repeat (5'-TTAGGG-3'). Similar insertions were not detected among ENi retrotransposition events generated in controls or in XR-1 CHO cells deficient for XRCC4, an NHEJ factor that is required for DNA ligation but has no known function in telomere maintenance. Furthermore, transient expression of a dominant-negative allele of human TRF2 ( also called TERF2) in XRCC4-deficient XR-1 cells, which disrupts telomere capping, enables telomere-associated ENi retrotransposition events. These data indicate that L1s containing a disabled endonuclease can use dysfunctional telomeres as an integration substrate. The findings highlight similarities between the mechanism of ENi retrotransposition and the action of telomerase, because both processes can use a 3' OH for priming reverse transcription at either internal DNA lesions or chromosome ends(7,8). Thus, we propose that ENi retrotransposition is an ancestral mechanism of RNA-mediated DNA repair associated with non-LTR retrotransposons that may have been used before the acquisition of an endonuclease domain.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62964/1/nature05560.pd

    Transcriptional analysis of the HeT-A retrotransposon in mutant and wild type stocks reveals high sequence variability at Drosophila telomeres and other unusual features

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Telomere replication in Drosophila depends on the transposition of a domesticated retroelement, the <it>HeT-A </it>retrotransposon. The sequence of the <it>HeT-A </it>retrotransposon changes rapidly resulting in differentiated subfamilies. This pattern of sequence change contrasts with the essential function with which the <it>HeT-A </it>is entrusted and brings about questions concerning the extent of sequence variability, the telomere contribution of different subfamilies, and whether wild type and mutant Drosophila stocks show different <it>HeT-A </it>scenarios.</p> <p>Results</p> <p>A detailed study on the variability of <it>HeT-A </it>reveals that both the level of variability and the number of subfamilies are higher than previously reported. Comparisons between GIII, a strain with longer telomeres, and its parental strain Oregon-R indicate that both strains have the same set of <it>HeT-A </it>subfamilies. Finally, the presence of a highly conserved splicing pattern only in its antisense transcripts indicates a putative regulatory, functional or structural role for the <it>HeT-A </it>RNA. Interestingly, our results also suggest that most <it>HeT-A </it>copies are actively expressed regardless of which telomere and where in the telomere they are located.</p> <p>Conclusions</p> <p>Our study demonstrates how the <it>HeT-A </it>sequence changes much faster than previously reported resulting in at least nine different subfamilies most of which could actively contribute to telomere extension in Drosophila. Interestingly, the only significant difference observed between Oregon-R and GIII resides in the nature and proportion of the antisense transcripts, suggesting a possible mechanism that would in part explain the longer telomeres of the GIII stock.</p

    Novel simple sequence repeats (SSRs) detected by ND-FISH in heterochromatin of Drosophila melanogaster

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, substantial progress has been made in understanding the organization of sequences in heterochromatin regions containing single-copy genes and transposable elements. However, the sequence and organization of tandem repeat DNA sequences, which are by far the majority fraction of <it>D. melanogaster </it>heterochromatin, are little understood.</p> <p>Results</p> <p>This paper reports that the heterochromatin, as well as containing long tandem arrays of pentanucleotide satellites (AAGAG, AAGAC, AATAT, AATAC and AACAC), is also enriched in other simple sequence repeats (SSRs) such as A, AC, AG, AAG, ACT, GATA and GACA. Non-denaturing FISH (ND-FISH) showed these SSRs to localize to the chromocentre of polytene chromosomes, and was used to map them on mitotic chromosomes. Different distributions were detected ranging from single heterochromatic clusters to complex combinations on different chromosomes. ND-FISH performed on extended DNA fibres, along with Southern blotting, showed the complex organization of these heterochromatin sequences in long tracts, and revealed subclusters of SSRs (several kilobase in length) flanked by other DNA sequences. The chromosomal characterization of C, AAC, AGG, AAT, CCG, ACG, AGC, ATC and ACC provided further detailed information on the SSR content of <it>D. melanogaster </it>at the whole genome level.</p> <p>Conclusion</p> <p>These data clearly show the variation in the abundance of different SSR motifs and reveal their non-random distribution within and between chromosomes. The greater representation of certain SSRs in <it>D. melanogaster </it>heterochromatin suggests that its complexity may be greater than previously thought.</p

    Loss of the Tumor Suppressor Pten Promotes Proliferation of Drosophila melanogaster Cells In Vitro and Gives Rise to Continuous Cell Lines

    Get PDF
    In vivo analysis of Drosophila melanogaster has enhanced our understanding of many biological processes, notably the mechanisms of heredity and development. While in vivo analysis of mutants has been a strength of the field, analyzing fly cells in culture is valuable for cell biological, biochemical and whole genome approaches in which large numbers of homogeneous cells are required. An efficient genetic method to derive Drosophila cell lines using expression of an oncogenic form of Ras (RasV12) has been developed. Mutations in tumor suppressors, which are known to cause cell hyperproliferation in vivo, could provide another method for generating Drosophila cell lines. Here we screened Drosophila tumor suppressor mutations to test if they promoted cell proliferation in vitro. We generated primary cultures and determined when patches of proliferating cells first emerged. These cells emerged on average at 37 days in wild-type cultures. Using this assay we found that a Pten mutation had a strong effect. Patches of proliferating cells appeared on average at 11 days and the cultures became confluent in about 3 weeks, which is similar to the timeframe for cultures expressing RasV12. Three Pten mutant cell lines were generated and these have now been cultured for between 250 and 630 cell doublings suggesting the life of the mutant cells is likely to be indefinite. We conclude that the use of Pten mutants is a powerful means to derive new Drosophila cell lines

    Efficient Genetic Method for Establishing Drosophila Cell Lines Unlocks the Potential to Create Lines of Specific Genotypes

    Get PDF
    Analysis of cells in culture has made substantial contributions to biological research. The versatility and scale of in vitro manipulation and new applications such as high-throughput gene silencing screens ensure the continued importance of cell-culture studies. In comparison to mammalian systems, Drosophila cell culture is underdeveloped, primarily because there is no general genetic method for deriving new cell lines. Here we found expression of the conserved oncogene RasV12 (a constitutively activated form of Ras) profoundly influences the development of primary cultures derived from embryos. The cultures become confluent in about three weeks and can be passaged with great success. The lines have undergone more than 90 population doublings and therefore constitute continuous cell lines. Most lines are composed of spindle-shaped cells of mesodermal type. We tested the use of the method for deriving Drosophila cell lines of a specific genotype by establishing cultures from embryos in which the warts (wts) tumor suppressor gene was targeted. We successfully created several cell lines and found that these differ from controls because they are primarily polyploid. This phenotype likely reflects the known role for the mammalian wts counterparts in the tetraploidy checkpoint. We conclude that expression of RasV12 is a powerful genetic mechanism to promote proliferation in Drosophila primary culture cells and serves as an efficient means to generate continuous cell lines of a given genotype
    corecore