5 research outputs found

    Roadmap on Li-ion battery manufacturing research

    Get PDF
    Growth in the Li-ion battery market continues to accelerate, driven primarily by the increasing need for economic energy storage for electric vehicles. Electrode manufacture by slurry casting is the first main step in cell production but much of the manufacturing optimisation is based on trial and error, know-how and individual expertise. Advancing manufacturing science that underpins Li-ion battery electrode production is critical to adding to the electrode manufacturing value chain. Overcoming the current barriers in electrode manufacturing requires advances in materials, manufacturing technology, in-line process metrology and data analytics, and can enable improvements in cell performance, quality, safety and process sustainability. In this roadmap we explore the research opportunities to improve each stage of the electrode manufacturing process, from materials synthesis through to electrode calendering. We highlight the role of new process technology, such as dry processing, and advanced electrode design supported through electrode level, physics-based modelling. Progress in data driven models of electrode manufacturing processes is also considered. We conclude there is a growing need for innovations in process metrology to aid fundamental understanding and to enable feedback control, an opportunity for electrode design to reduce trial and error, and an urgent imperative to improve the sustainability of manufacture

    Roadmap on Li-ion battery manufacturing research

    Get PDF
    Growth in the Li-ion battery market continues to accelerate, driven by increasing need for economic energy storage in the electric vehicle market. Electrode manufacture is the first main step in production and in an industry dominated by slurry casting, much of the manufacturing process is based on trial and error, know-how and individual expertise. Advancing manufacturing science that underpins Li-ion battery electrode production is critical to adding value to the electrode manufacturing value chain. Overcome the current barriers in the electrode manufacturing requires advances in material innovation, manufacturing technology, in-line process metrology and data analytics to improve cell performance, quality, safety and process sustainability. In this roadmap we present where fundamental research can impact advances in each stage of the electrode manufacturing process from materials synthesis to electrode calendering. We also highlight the role of new process technology such as dry processing and advanced electrode design supported through electrode level, physics-based modelling. To compliment this, the progresses in data driven models of full manufacturing processes is reviewed. For all the processes we describe, there is a growing need process metrology, not only to aid fundamental understanding but also to enable true feedback control of the manufacturing process. It is our hope this roadmap will contribute to this rapidly growing space and provide guidance and inspiration to academia and industry

    Finite Elementmethod (FEM)modeling of Hopper Flow

    No full text
    Hopper systems of different shapes and sizes are widely used in bulk solids industries to store and further process the particulate material. Poor hopper design causes variety of problems and results in wastage of resources. This dissertation investigates the applicability of finite element method (FEM) based continuum modeling in predicting flow characteristics of particulate materials discharging through hopper system. Throughout the years, FEM has been implemented to simulate the shear failure of particulate materials such as sand, glass beads, and pharmaceutical powders. The FEM framework is based on the underlying constitutive model. Different constitutive models are available in the literature to govern the behavior of particulate materials. These models differ in their complexity, ease of implementation, and have specific strengths and limitations. This work thoroughly investigates the elasto-plastic constitutive models available in the commercial software Abaqus in the context of hopper flow of particulate materials. The thesis consists of three major parts, first part deals with FEM modeling of cohesionless particulate materials and corresponding verification of the hopper flow characteristics through comparison to analytical theories and empirical correlations. The second part presents quantitative comparison of FEM predicted flow characteristics to experimental results for Ottawa sand discharging through concentric and eccentric bins. Particle image velocimetry (PIV) experiments are conducted on a laboratory-scale bin to quantify different flow characteristics. The last part deals with cohesive particulate materials and presents a novel FEM approach for predicting the critical hopper outlet opening to ensure uninterrupted discharge of the stored material. This thesis concludes that the FEM modeling based on simple elasto-plastic constitutive model proves useful in predicting different hopper flow characteristics of particulate materials. The accuracy of FEM modeling depends on detailed material characterization and corresponding implementation in Abaqus. Some modifications need to be made in the elasto-plastic constitutive models to accurately represent the bulk material behavior. The ideas presented in this thesis can be applied to FEM modeling of other processing equipment such as the rotating drum, screwfeeder, rotating blender/mixer etc

    Status and outlook for lithium-ion battery cathode material synthesis and the application of mechanistic modeling

    No full text
    This work reviews different techniques available for the synthesis and modification of cathode active material (CAM) particles used in Li-ion batteries. The synthesis techniques are analyzed in terms of processes involved and product particle structure. The knowledge gap in the process-particle structure relationship is identified. Many of these processes are employed in other similar industries; hence, parallel insights and knowledge transfer can be applied to battery materials. Here, we discuss examples of applications of different mechanistic models outside the battery literature and identify similar potential applications for the synthesis of CAMs. We propose that the widespread implementation of such mechanistic models will increase the understanding of the process-particle structure relationship. Such understanding will provide better control over the CAM synthesis technique and open doors to the precise tailoring of product particle morphologies favorable for enhanced electrochemical performance

    Roadmap on Li-ion battery manufacturing research

    No full text
    Growth in the Li-ion battery market continues to accelerate, driven primarily by the increasing need for economic energy storage for electric vehicles. Electrode manufacture by slurry casting is the first main step in cell production but much of the manufacturing optimisation is based on trial and error, know-how and individual expertise. Advancing manufacturing science that underpins Li-ion battery electrode production is critical to adding to the electrode manufacturing value chain. Overcoming the current barriers in electrode manufacturing requires advances in materials, manufacturing technology, in-line process metrology and data analytics, and can enable improvements in cell performance, quality, safety and process sustainability. In this roadmap we explore the research opportunities to improve each stage of the electrode manufacturing process, from materials synthesis through to electrode calendering. We highlight the role of new process technology, such as dry processing, and advanced electrode design supported through electrode level, physics-based modelling. Progress in data driven models of electrode manufacturing processes is also considered. We conclude there is a growing need for innovations in process metrology to aid fundamental understanding and to enable feedback control, an opportunity for electrode design to reduce trial and error, and an urgent imperative to improve the sustainability of manufacture
    corecore