2 research outputs found

    Marek's Disease Virus Down-Regulates Surface Expression of MHC (B Complex) Class I (BF) Glycoproteins during Active but not Latent Infection of Chicken Cells

    Get PDF
    AbstractInfection of chicken cells with three Marek's disease virus (MDV) serotypes interferes with expression of the major histocompatibility complex (MHC or B complex) class I (BF) glycoproteins. BF surface expression is blocked after infection of OU2 cells with MDV serotypes 1, 2, and 3. MDV-induced T-cell tumors suffer a nearly complete loss of cell surface BF upon virus reactivation with 5-bromo-2′-deoxyuridine (BUdR). The recombinant virus (RB1BUS2gfpΔ) transforming the MDCC-UA04 cell line expresses green fluorescent protein (GFP) during the immediate early phase of viral gene expression. Of the UA04 cells induced to express the immediate early GFP, approximately 60% have reduced levels of BF expression. All of the reactivated UA04 and MSB1 tumor cells expressing the major early viral protein pp38 display reduced levels of BF. Thus, BF down-regulation begins in the immediate early phase and is complete by the early phase of viral gene expression. The intracellular pool of BF is not appreciably affected, indicating that the likely mechanism is a block in BF transport and not the result of transcriptional or translational regulation

    A DNA vaccine encoding a conserved Eimeria protein induces protective immunity against live Eimeria acervulina challenge

    No full text
    Coccidiosis is caused by several distinct intestinal protozoa of Eimeria sp., and is responsible for intestinal lesions and severe body weight loss in chickens. To develop a DNA vaccination strategy for coccidiosis, an expression vector pMP13 encoding a conserved antigen of Eimeria was constructed by subcloning 3-1E cDNA into pBK-CMV and used to elicit protective immunity against E. acervulina. One-day-old chickens were immunized intramuscularly (IM) or subcutaneously (SC) with various doses of pMP13 expression vector ranging from 5 to 100 ug two weeks apart and were challenged with 5×103E. acervulina. Chickens immunized with 5, 10, 50 or 100 ug of pMP13 plasmid, but not control plasmid, pBK-CMV, showed significantly reduced oocysts following challenge infection with E. acervulina. Two injections were in general more effective than one injection with higher dose of DNA eliciting better protection. At 10 days post challenge infection, maximum levels of circulating antibodies were detected regardless of the routes of injection, although IM injection provided higher levels of serum antibodies compared to SC injection. Serum antibody levels demonstrated a dose-dependent response showing higher antibody production at higher DNA dose. DNA immunization with pMP13 also induced significant changes in T-cell subpopulations in the spleen and duodenum intraepithelial lymphocytes. At 4 days post DNA immunization, pMP13-immunized chickens showed lower CD8, and higher CD4+ and γδ T+ cells in the duodenum compared to the pBK-CMV-immunized chickens. Following challenge infection with E. acervulina, pMP13-immunized chickens showed lower CD8+ and αβ T+ cells, and higher CD4+ cells than pBK-CMV-immunized chickens in the duodenum. These findings demonstrate that DNA immunization with pMP13 induce local and systemic host immune responses against Eimeria
    corecore