4 research outputs found

    Assessing the Utility of Thermodynamic Features for microRNA Target Prediction under Relaxed Seed and No Conservation Requirements

    Get PDF
    BACKGROUND: Many computational microRNA target prediction tools are focused on several key features, including complementarity to 5'seed of miRNAs and evolutionary conservation. While these features allow for successful target identification, not all miRNA target sites are conserved and adhere to canonical seed complementarity. Several studies have propagated the use of energy features of mRNA:miRNA duplexes as an alternative feature. However, different independent evaluations reported conflicting results on the reliability of energy-based predictions. Here, we reassess the usefulness of energy features for mammalian target prediction, aiming to relax or eliminate the need for perfect seed matches and conservation requirement. METHODOLOGY/PRINCIPAL FINDINGS: We detect significant differences of energy features at experimentally supported human miRNA target sites and at genome-wide sites of AGO protein interaction. This trend is confirmed on datasets that assay the effect of miRNAs on mRNA and protein expression changes, and a simple linear regression model leads to significant correlation of predicted versus observed expression change. Compared to 6-mer seed matches as baseline, application of our energy-based model leads to ∼3-5-fold enrichment on highly down-regulated targets, and allows for prediction of strictly imperfect targets with enrichment above baseline. CONCLUSIONS/SIGNIFICANCE: In conclusion, our results indicate significant promise for energy-based miRNA target prediction that includes a broader range of targets without having to use conservation or impose stringent seed match rules

    MicroRNA Target Prediction via Duplex Formation Features and Direct Binding Evidence

    No full text
    <p>MicroRNAs (miRNAs) are small RNAs that have important roles in post-transcriptional gene regulation in a wide range of species. This regulation is controlled by having miRNAs directly bind to a target messenger RNA (mRNA), causing it to be destabilized and degraded, or translationally repressed. Identifying miRNA targets has been a large area of focus for study; however, a lack of generally high-throughput experiments to validate direct miRNA targeting has been a limiting factor. To overcome these limitations, computational methods have become crucial for understanding and predicting miRNA-gene target interactions.</p><p>While a variety of computational tools exist for predicting miRNA targets, many of them are focused on a similar feature set for their prediction. These commonly used features are complementarity to 5'seed of miRNAs and evolutionary conservation. Unfortunately, not all miRNA target sites are conserved or adhere to canonical seed complementarity. Seeking to address these limitations, several studies have included energy features of mRNA:miRNA duplex formation as alternative features. However, different independent evaluations reported conflicting results on the reliability of energy-based predictions. Here, we reassess the usefulness of energy features for mammalian target prediction, aiming to relax or eliminate the need for perfect seed matches and conservation requirement.</p><p>We detect significant differences of energy features at experimentally supported human miRNA target sites and at genome-wide interaction sites to Argonaute (AGO) protein family members, which are essential parts of the miRNA machinery complex. This trend is confirmed on data sets that assay the effect of miRNAs on mRNA and protein expression changes, where a statistically significant change in expression is noted when compared to the control. Furthermore, our method also allows for prediction of strictly imperfect sites, as well as non-conserved targets.</p><p>Recently, new methods for identifying direct miRNA binding have been developed, which provides us with additional sources of information for miRNA target prediction. While some computational target predictions tools have begun to incorporate this information, they still rely on the presence of a seed match in the AGO-bound windows without accounting for the possibility of variations. </p><p>We investigate the usefulness of the site level direct binding evidence in miRNA target identification and propose a model that incorporates multiple different features along with the AGO-interaction data. Our method outperforms both an ad hoc strategy of seed match searches as well as an existing target prediction tool, while still allowing for predictions of sites other than a long perfect seed match. Additionally, we show supporting evidence for a class of non-canonical sites as bound targets. Our model can be extended to predict additional types of imperfect sites, and can also be readily modified to include additional features that may produce additional improvements.</p>Dissertatio

    MicroRNA target site identification by integrating sequence and binding information

    No full text
    High-throughput sequencing has opened numerous possibilities for the identification of regulatory RNA-binding events. Cross-linking and immunoprecipitation of Argonaute protein members can pinpoint microRNA target sites within tens of bases, but leaves the identity of the microRNA unresolved. A flexible computational framework that integrates sequence with cross-linking features reliably identifies the microRNA family involved in each binding event, considerably outperforms sequence-only approaches, and quantifies the prevalence of noncanonical binding modes
    corecore