4 research outputs found

    High-Power Multilevel Step-Up DC/DC Converter for Offshore Wind Energy Systems

    No full text
    This paper presents a multilevel step-up dc/dc converter for dc-grid-based offshore wind energy conversion applications. The main features of the proposed multilevel converter are as follows: 1) the voltage stress of the power devices can be reduced, making it suitable for high-voltage applications; 2) the boost inductor can be reduced significantly, leading to the outstanding dynamic performance; and 3) high-voltage gain can be obtained and thus is well-suited for high-gain applications. Theoretical analysis was carried out for a four-level step-up converter, based on which, the converter can be extended to any arbitrary number of levels. The proposed four-level converter was verified by a simulation and evaluated by comparing with a conventional multilevel dc/dc converter in terms of the component stress and power device count. The developed topology was implemented on a 2-kW prototype converter to evaluate its feasibility

    Photocatalytic Reduction of Nitrate in Aqueous Solutions using  Ag-doped TiO2/UV Process

    No full text
    Background and Objectives: Pollution of water resources to nitrate is an environmental problem in many parts of the world. This problem possibly causes diseases such as methemoglobinemia, lymphatic system cancer and Leukemia. Hence, nitrate control and removal from water resources is necessary. Considering that application of nanomaterials in treatment of environmental pollutants has become an interesting method, in this research use of Ag-doped TiO2 nanoparticles synthesized through photodeposition produced under UV irradiation was studied for removal of nitrate from aqueous solutions.Materials and Methods: Three nitrate concentrations of 20, 50, and 100 mg/L were considered. In order to determine the effect of Ag-doped TiO2 nanoparticles on  nitrate removal, dosages of  0.1, 0.4, 0.8 and 1.2 g/L nanoparticles were used; pH range of 5-9 was also considered. The effect of Ag-doped TiO2 nanoparticles both in darkness and under UV irradiation was studied. Moreover, the presence of chloride and sulfate anions on the system removal efficiency was investigated.Results: The optimum performance of nitrate removal (95.5%) was obtained using nitrate concentration of 100 mg/L, in acidic pH and 0.8 g/L Ag-TiO2. Increase of nanoparticle dosage up to 0.8 g/L, increased the removal efficiency, but for 1.2 g/L dosage of nanoparticles, the removal efficiency decreased. Maximum reduction performance without nanoparticles, under UV irradiation and under darkness conditions were 32% and 23.3% , respectively. In addition, we found that presence of sulfate and chloride anions in aqueous solution reduced efficiency of nitrate removal.Conclusion: Results of this study showed that Ag-doped TiO2 nanoparticles may be efficiently used for nitrate removal from aqueous solutions

    Comparing the efficiency of UV/ZrO2 and UV/H2O2/ZrO2 photocatalytic processes in furfural removal from aqueous solution

    No full text
    Abstract Furfural is a toxic chemical compound that is widely applied as a solvent in a great many of industries, and it can cause many problems to the human beings and environment. Various methods of removing furfural from the wastewaters have been studied. AOPs methods are utilized for the elimination of a vast majority of the pollutants due to their high efficiency as well as for their lack of creating secondary contamination. Therefore, the present study aims at comparing the efficiency of UV/ZrO2 and UV/H2O2/ZrO2 photocatalytic processes in removing furfural from aqueous solutions. The solution’s initial pH, furfural’s concentration, zirconium catalyst dosage and time were investigated as the parameters influencing the removal efficiency by the two foresaid processes, and the effect of H2O2 addition in various concentrations into UV/H2O2/ZrO2 process was also evaluated. Spectrophotometer device was employed to assay the concentration of the residual furfural. The results indicated that the pH of the environment, the amount of the nanoparticle and H2O2 input concentration largely influence the furfural omission. The optimal condition for the removal of furfural in UV/ZrO2 process in an initial concentration of 20 mg/L, a pH equal to 3, a catalyst dose of 0.25 g/L during a period of 60-min time was 81.6%, and it was 99% for UV/H2O2/ZrO2 process in a pH equal to 7 with the addition of H2O2 for a concentration of 0.75 mL/L under the same conditions. Generally, it can be concluded that UV/H2O2/ZrO2 and UV/ZrO2 photocatalytic processes can effectively be applied to remove furfural from the aqueous solutions, especially in lower concentrations

    Partial Discharge Measurements under DC Voltages Containing Harmonics Produced by Power Electronic Devices

    No full text
    Partial Discharge (PD) monitoring is one of the main diagnostic instrument to evaluate the reliability of modern electrical transmission and distribution systems. The widespread use of High voltage dc (HVDC) connections increase the demand of voltage source converters (VSCs) which, as a consequence, has brought about new challenges in the field of partial discharge measurements. In fact, the output voltage waveforms generated by AC/DC modular multilevel converters (MMCs) are affected by a significant harmonic content which influences the Partial Discharges (PDs) activity. For this reason, previous research mainly investigated the PD phenomenon on the AC side of the converter. The aim of the present work was to evaluate the PDs behavior applying a voltage waveform containing ripple at the DC side of the converter. At first, a pure DC voltage has been used to stress the tested specimen and then harmonic content has been added by chancing the number of modules of the simulated AC/DC converter. For the different generated waveforms, measurements of PDs have been carried out and a comparison of the different PDs pattern have been made. The effect on the PDs behavior has been also evaluated for different switching frequencies
    corecore