183 research outputs found

    Effects of In Vivo Hepatic Ischemia-Reperfusion Injury on the Hepatobiliary Disposition of Rhodamine 123 and its Metabolites in Isolated Perfused Rat Livers

    Get PDF
    Purpose. A few studies have shown that normothermic hepatic ischemia-reperfusion (IR) injury may affect the mRNA and/or protein levels of canalicular transporters P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (Mrp2). However, the effects of the injury on the functions of these canalicular transporters with respect to the biliary excretion of drugs remain largely unknown. Therefore, the purpose of this study was to investigate the effects of warm hepatic IR on the hepatobiliary disposition of rhodamine 123 (RH-123), a P-gp substrate, and its glucuronidated metabolite (RH-Glu), an Mrp2 substrate, in rats. Methods. Twenty four or 72 h following a 60-min partial ischemia or sham operation in rats, livers were isolated and perfused ex vivo with a constant concentration (~100 ng/mL) of RH-123. The concentration of RH-123 and its glucuronidated (RH-Glu) and deacylated (RH-110) metabolites were determined in the outlet perfusate, bile, and the liver tissue using HPLC, and relevant pharmacokinetic parameters were estimated. Results. Twenty-four-h IR caused a significant reduction in the hepatic extraction ratio of RH-123 (IR: 0.857 ± 0.078; Sham: 0.980 ± 0.017) and the biliary recovery of the parent drug and RH-Glu by 43% and 44%, respectively. The reductions in the biliary recovery were associated with significant reductions in the apparent biliary clearance of RH-123 and RH-Glu. Mass balance data showed that the formation of the glucuronidated or deacylated metabolite was not significantly affected by the 24-h IR injury. In contrast to the 24-h IR, the injury did not have any effect on the hepatobiliary disposition of RH-123 or its metabolites following 72 h of reperfusion. Conclusions. It is concluded that the pharmacokinetics of drugs that are subject to biliary excretion by the canalicular P-gp and Mrp2 transporters may be altered shortly after hepatic IR injury

    Effects of In Vivo Hepatic Ischemia-Reperfusion Injury on the Hepatobiliary Disposition of Rhodamine 123 and its Metabolites in Isolated Perfused Rat Livers

    Get PDF
    Purpose. A few studies have shown that normothermic hepatic ischemia-reperfusion (IR) injury may affect the mRNA and/or protein levels of canalicular transporters P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (Mrp2). However, the effects of the injury on the functions of these canalicular transporters with respect to the biliary excretion of drugs remain largely unknown. Therefore, the purpose of this study was to investigate the effects of warm hepatic IR on the hepatobiliary disposition of rhodamine 123 (RH-123), a P-gp substrate, and its glucuronidated metabolite (RH-Glu), an Mrp2 substrate, in rats. Methods. Twenty four or 72 h following a 60-min partial ischemia or sham operation in rats, livers were isolated and perfused ex vivo with a constant concentration (~100 ng/mL) of RH-123. The concentration of RH-123 and its glucuronidated (RH-Glu) and deacylated (RH-110) metabolites were determined in the outlet perfusate, bile, and the liver tissue using HPLC, and relevant pharmacokinetic parameters were estimated. Results. Twenty-four-h IR caused a significant reduction in the hepatic extraction ratio of RH-123 (IR: 0.857 ± 0.078; Sham: 0.980 ± 0.017) and the biliary recovery of the parent drug and RH-Glu by 43% and 44%, respectively. The reductions in the biliary recovery were associated with significant reductions in the apparent biliary clearance of RH-123 and RH-Glu. Mass balance data showed that the formation of the glucuronidated or deacylated metabolite was not significantly affected by the 24-h IR injury. In contrast to the 24-h IR, the injury did not have any effect on the hepatobiliary disposition of RH-123 or its metabolites following 72 h of reperfusion. Conclusions. It is concluded that the pharmacokinetics of drugs that are subject to biliary excretion by the canalicular P-gp and Mrp2 transporters may be altered shortly after hepatic IR injury

    Exposure-Response and Population Pharmacokinetic Analyses of a Novel Subcutaneous Formulation of Daratumumab Administered to Multiple Myeloma Patients

    Get PDF
    We report the population pharmacokinetic (PK) and exposure-response analyses of a novel subcutaneous formulation of daratumumab (DARA) using data from 3 DARA subcutaneous monotherapy studies (PAVO Part 2, MMY1008, COLUMBA) and 1 combination therapy study (PLEIADES). Results were based on 5159 PK samples from 742 patients (DARA 1800 mg subcutaneously, n = 487 [monotherapy, n = 288; combination therapy, n = 199]; DARA 16 mg/kg intravenously, n = 255 [all monotherapy, in COLUMBA]; age, 33-92 years; weight, 28.6-147.6 kg). Subcutaneous and intravenous DARA monotherapies were administered once every week for cycles 1-2, once every 2 weeks for cycles 3-6, and once every 4 weeks thereafter (1 cycle is 28 days). The subcutaneous DARA combination therapy was administered with the adaptation of corresponding standard-of-care regimens. PK samples were collected between cycle 1 and cycle 12. Among monotherapy studies, throughout the treatment period, subcutaneous DARA provided similar/slightly higher trough concentrations (Ctrough) versus intravenous DARA, with lower maximum concentrations and smaller peak-to-trough fluctuations. The PK profile was consistent between subcutaneous DARA monotherapy and combination therapies. The exposure-response relationship between daratumumab PK and efficacy or safety end points was similar for subcutaneous and intravenous DARA. Although the ≤65-kg subgroup reported a higher incidence of neutropenia, no relationship was found between the incidence of neutropenia and exposure, which was attributed, in part, to the preexisting imbalance in neutropenia between subcutaneous DARA (45.5%) and intravenous DARA (19%) in patients ≤50 kg. A flat relationship was observed between body weight and any grade and at least grade 3 infections. The results support the DARA 1800-mg subcutaneous flat dose as an alternative to the approved intravenous DARA 16 mg/kg.The clinical studies and the analyses presented here were supported by research funding from Janssen Research & Development, LLC

    Development and validation of stability indicating method for determination of sertraline following ICH guidlines and its determination in pharmaceuticals and biological fluids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sertraline is a well known antidepressant drug which belongs to a class called selective serotonin reuptake inhibitor. Most published methods do not enable studying the stability of this drug in different stress conditions.</p> <p>Results</p> <p>Two new methods were developed for the determination of sertraline (SER). Both methods are based on coupling with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) in borate buffer of pH 7.8 and measuring the reaction product spectrophotometrically at 395 nm (Method I) or spectrofluorimetrically at 530 nm upon excitation at 480 nm (Method II). The response-concentration plots were rectilinear over the range 2-24 μg/mL and 0.25-5 μg/mL for methods I and II respectively with LOD of 0.18 μg/mL and 0.07 μg/mL, and LOQ of 0.56 μg/mL and 0.21 μg/mL for methods I and II, respectively.</p> <p>Conclusion</p> <p>Both methods were applied to the analysis of commercial tablets and the results were in good agreement with those obtained using a reference method. The fluorimetric method was further applied to the in vivo determination of SER in human plasma. A proposal of the reaction pathway was presented. The spectrophotometric method was extended to stability study of SER. The drug was exposed to alkaline, acidic, oxidative and photolytic degradation according to ICH guidelines. Moreover, the method was utilized to investigate the kinetics of oxidative degradation of the drug. The apparent first order rate constant and t<sub>1/2 </sub>of the degradation reaction were determined.</p

    Myocardial depressant effects of interleukin 6 in meningococcal sepsis are regulated by p38 mitogen-activated protein kinase

    Get PDF
    Our findings demonstrate an integral role of the p38 mitogen-activated protein kinase pathway in interleukin 6-mediated cardiac contractile dysfunction and inotrope insensitivity. Dysregulation of the p38 mitogen-activated protein kinase pathway in meningococcal septicemia suggests that this pathway may be an important target for novel therapies to reverse myocardial dysfunction in patients with meningococcal septic shock who are not responsive to inotropic support

    Characterization of Rhodamine-123 as a Tracer Dye for Use In In vitro Drug Transport Assays

    Get PDF
    Fluorescent tracer dyes represent an important class of sub-cellular probes and allow the examination of cellular processes in real-time with minimal impact upon these processes. Such tracer dyes are becoming increasingly used for the examination of membrane transport processes, as they are easy-to-use, cost effective probe substrates for a number of membrane protein transporters. Rhodamine 123, a member of the rhodamine family of flurone dyes, has been used to examine membrane transport by the ABCB1 gene product, MDR1. MDR1 is viewed as the archetypal drug transport protein, and is able to efflux a large number of clinically relevant drugs. In addition, ectopic activity of MDR1 has been associated with the development of multiple drug resistance phenotype, which results in a poor patient response to therapeutic intervention. It is thus important to be able to examine the potential for novel compounds to be MDR1 substrates. Given the increasing use rhodamine 123 as a tracer dye for MDR1, a full characterisation of its spectral properties in a range of in vitro assay-relevant media is warranted. Herein, we determine λmax for excitation and emission or rhodamine 123 and its metabolite rhodamine 110 in commonly used solvents and extraction buffers, demonstrating that fluorescence is highly dependent on the chemical environment: Optimal parameters are 1% (v/v) methanol in HBSS, with λex = 505 nm, λem = 525 nm. We characterise the uptake of rhodamine 123 into cells, via both passive and active processes, and demonstrate that this occurs primarily through OATP1A2-mediated facilitated transport at concentrations below 2 µM, and via micelle-mediated passive diffusion above this. Finally, we quantify the intracellular sequestration and metabolism of rhodamine 123, demonstrating that these are both cell line-dependent factors that may influence the interpretation of transport assays

    Subcutaneous daratumumab plus standard treatment regimens in patients with multiple myeloma across lines of therapy (PLEIADES): an open-label Phase II study

    Get PDF
    © 2020 The Authors. Daratumumab is a CD38-targeting monoclonal antibody approved for intravenous (IV) infusion for multiple myeloma (MM). We describe the Phase II PLEIADES study of a subcutaneous formulation of daratumumab (DARA SC) in combination with standard-of-care regimens: DARA SC plus bortezomib/lenalidomide/dexamethasone (D-VRd) for transplant-eligible newly diagnosed MM (NDMM); DARA SC plus bortezomib/melphalan/prednisone (D-VMP) for transplant-ineligible NDMM; and DARA SC plus lenalidomide/dexamethasone (D-Rd) for relapsed/refractory MM. In total, 199 patients were treated (D-VRd, n = 67; D-VMP, n = 67; D-Rd, n = 65). The primary endpoints were met for all cohorts: the ≥very good partial response (VGPR) rate after four 21-day induction cycles for D-VRd was 71·6% [90% confidence interval (CI) 61·2–80·6%], and the overall response rates (ORRs) for D-VMP and D-Rd were 88·1% (90% CI 79·5–93·9%) and 90·8% (90% CI 82·6–95·9%). With longer median follow-up for D-VMP and D-Rd (14·3 and 14·7 months respectively), responses deepened (ORR: 89·6%, 93·8%; ≥VGPR: 77·6%, 78·5%), and minimal residual disease–negativity (10‒5) rates were 16·4% and 15·4%. Infusion-related reactions across all cohorts were infrequent (≤9·0%) and mild. The median DARA SC administration time was 5 min. DARA SC with standard-of-care regimens demonstrated comparable clinical activity to DARA IV–containing regimens, with low infusion-related reaction rates and reduced administration time
    • …
    corecore