2 research outputs found

    Tissue-Specific Methylation Biosignatures for Monitoring Diseases: An In Silico Approach

    No full text
    Tissue-specific gene methylation events are key to the pathogenesis of several diseases and can be utilized for diagnosis and monitoring. Here, we established an in silico pipeline to analyze high-throughput methylome datasets to identify specific methylation fingerprints in three pathological entities of major burden, i.e., breast cancer (BrCa), osteoarthritis (OA) and diabetes mellitus (DM). Differential methylation analysis was conducted to compare tissues/cells related to the pathology and different types of healthy tissues, revealing Differentially Methylated Genes (DMGs). Highly performing and low feature number biosignatures were built with automated machine learning, including: (1) a five-gene biosignature discriminating BrCa tissue from healthy tissues (AUC 0.987 and precision 0.987), (2) three equivalent OA cartilage-specific biosignatures containing four genes each (AUC 0.978 and precision 0.986) and (3) a four-gene pancreatic β-cell-specific biosignature (AUC 0.984 and precision 0.995). Next, the BrCa biosignature was validated using an independent ccfDNA dataset showing an AUC and precision of 1.000, verifying the biosignature’s applicability in liquid biopsy. Functional and protein interaction prediction analysis revealed that most DMGs identified are involved in pathways known to be related to the studied diseases or pointed to new ones. Overall, our data-driven approach contributes to the maximum exploitation of high-throughput methylome readings, helping to establish specific disease profiles to be applied in clinical practice and to understand human pathology

    In Vivo Estimation of the Biological Effects of Endocrine Disruptors in Rabbits after Combined and Long-Term Exposure: Study Protocol

    No full text
    Recently, an increasing number of chemical compounds are being characterized as endocrine disruptors since they have been proven to interact with the endocrine system, which plays a crucial role in the maintenance of homeostasis. Glyphosate is the active substance of the herbicide Roundup®, bisphenol A (BPA) and di (2-ethylhexyl) phthalate (DEHP) are used as plasticizers, while triclosan (TCS), methyl (MePB), propyl (PrPB), and butyl (BuPB) parabens are used as antimicrobial agents and preservatives mainly in personal care products. Studies indicate that exposure to these substances can affect humans causing developmental problems and problems in the endocrine, reproductive, nervous, immune, and respiratory systems. Although there are copious studies related to these substances, there are few in vivo studies related to combined exposure to these endocrine disruptors. The aim of the present pilot study is the investigation and assessment of the above substances’ toxicity in rabbits after twelve months of exposure to glyphosate (both pure and commercial form) and to a mixture of all the above substances at subtoxic levels. The lack of data from the literature concerning rabbits’ exposure to these substances and the restrictions of the 3Rs Principle will result in a limited number of animals available for use (four animals per group, twenty animals in total)
    corecore