830 research outputs found
Mechanisms to explain the poor results of carotid artery stenting (CAS) in symptomatic patients to date and options to improve CAS outcomes
BackgroundCarotid artery stenting (CAS) is considered by many as an alternative to carotid endarterectomy (CEA) for the management of carotid artery stenosis. However, recent trials demonstrated inferior results for CAS in symptomatic patients compared with CEA. We reviewed the literature to evaluate the appropriateness of CAS for symptomatic carotid artery stenosis and to determine the pathogenetic mechanism(s) associated with stroke following the treatment of such lesions. Based on this, we propose steps to improve the results of CAS for the treatment of symptomatic carotid stenosis.MethodsPubMed/Medline was searched up to March 25, 2010 for studies investigating the efficacy of CAS for the management of symptomatic carotid stenosis. Search terms used were “carotid artery stenting,” “symptomatic carotid artery stenosis,” “carotid endarterectomy,” “stroke,” “recurrent carotid stenosis,” and “long-term results” in various combinations.ResultsCurrent data suggest that CAS is not equivalent to CEA for the treatment of symptomatic carotid stenosis. Differences in carotid plaque morphology and a higher incidence of microemboli and cerebrovascular events during and after CAS compared with CEA may account for these inferior results.ConclusionsCurrently, most symptomatic patients are inappropriate candidates for CAS. Improved CAS technology referable to stent design and embolic protection strategies may alter this conclusion in the future
How to identify which patients with asymptomatic carotid stenosis could benefit from endarterectomy or stenting
Offering routine carotid endarterectomy (CEA) or carotid artery stenting (CAS) to patients with asymptomatic carotid artery stenosis (ACS) is no longer considered as the optimal management of these patients. Equally suboptimal, however, is the policy of offering only best medical treatment (BMT) to all patients with ACS and not considering any of them for prophylactic CEA. In the last few years, there have been many studies aiming to identify reliable predictors of future cerebrovascular events that would allow the identification of patients with high-risk ACS and offer a prophylactic carotid intervention only to these patients to prevent them from becoming symptomatic. All patients with ACS should receive BMT. The present article will summarise the evidence suggesting ways to identify these high-risk asymptomatic individuals, namely: (1) microemboli detection on transcranial Doppler, (2) plaque echolucency on Duplex ultrasound, (3) progression in the severity of ACS, (4) silent embolic infarcts on brain CT/MRI, (5) reduced cerebrovascular reserve, (6) increased size of juxtaluminal hypoechoic area, (7) identification of intraplaque haemorrhage using MRI and (8) carotid ulceration. The evidence suggests that approximately 10%-15% of patents with asymptomatic stenosis might benefit from intervention; this will become more clear after publication of ongoing studies comparing stenting or endarterectomy with best medical therapy. In the meantime, no patient should be offered intervention unless there is evidence of high risk of ipsilateral stroke, from modalities such as those discussed here
Hartley transform and the use of the Whitened Hartley spectrum as a tool for phase spectral processing
The Hartley transform is a mathematical transformation which is closely related to the better known Fourier transform. The properties that differentiate the Hartley Transform from its Fourier counterpart are that the forward and the inverse transforms are identical and also that the Hartley transform of a real signal is a real function of frequency. The Whitened Hartley spectrum, which stems from the Hartley transform, is a bounded function that encapsulates the phase content of a signal. The Whitened Hartley spectrum, unlike the Fourier phase spectrum, is a function that does not suffer from discontinuities or wrapping ambiguities. An overview on how the Whitened Hartley spectrum encapsulates the phase content of a signal more efficiently compared with its Fourier counterpart as well as the reason that phase unwrapping is not necessary for the Whitened Hartley spectrum, are provided in this study. Moreover, in this study, the product–convolution relationship, the time-shift property and the power spectral density function of the Hartley transform are presented. Finally, a short-time analysis of the Whitened Hartley spectrum as well as the considerations related to the estimation of the phase spectral content of a signal via the Hartley transform, are elaborated
- …