236 research outputs found

    Global Cancer Statistics 2022: The Trends Projection Analysis

    Get PDF
    Cancer is one of the most fatal diseases of recent times that causes several deaths every year. The disease variations in different parts of the world, the impact of available medical facilities, and other socio-economic factors have impacted the proper management of this disease. The comparative statistical data of cancer types like breast, prostate, colon, lung, lymph, blood, brain, and kidney cancers can be used to design treatment strategies and therapeutics development. With the advancement of science, several drugs besides diagnostic methods have emerged to control respective cancer and have assisted in curing this disease to some extent. The comparative statistics analysis for cancer about current prevalence is included here to bring a clear framework for the efforts towards future drug development to manage this disease. The availability of new diagnostics and therapeutics and advanced medical facilities in clinics impact cancer statistics. An evaluation of current trends and statistics of cancer pathology vis-à-vis theranostics (diagnostics as well as therapeutics) progress with possible application in clinical settings constitutes the core part of the discussion in this review

    Development of Cytarabine Prodrugs and Delivery Systems for Leukemia Treatment

    Get PDF
    Importance of the field: Cytarabine is a polar nucleoside drug used for the treatment of myeloid leukemia and non-Hodgkin’s lymphoma. The drug has a short plasma half-life, low stability, and limited bioavailability. Overdosing of patients with continuous infusions may lead to side effects. Thus, various prodrug strategies and delivery systems have been extensively explored to enhance the half-life, stability, and delivery of cytarabine. Among the recent cytarabine prodrugs, amino acid conjugate ValCytarabine and fatty acid derivative CP-4055 (in phase 3 trials) have been investigated for the treatment of leukemia and solid tumors, respectively. Alternatively, delivery systems of cytarabine have emerged for the treatment of different cancers. The liposomal-cytarabine formulation (DepoCyt®) has been approved for the treatment of lymphomatous meningitis. Areas covered in this review: Various prodrug strategies evaluated for cytarabine are discussed. Then, the review summarizes the drug delivery systems that have been used for more effective cancer therapy. What reader will gain: This review provides in-depth discussion of the prodrug strategy and delivery systems of cytarabine derivatives for the treatment of cancer. The design of cytarabine prodrugs and delivery systems provide insights for designing the next generation of more effective anticancer agents with enhanced delivery and stability. Take home message: Strategies on designing cytarabine prodrug and delivery formulations showed great promise in developing effective anticancer agents with better therapeutic profile. Similar studies with other anticancer nucleosides can be an alternative approach to gaining access to more effective anticancer agents

    The First Total Synthesis of (±)-4-methoxydecanoic Acid: A Novel Antifungal Fatty Acid

    Get PDF
    The hitherto unknown (±)-4-methoxydecanoic acid was synthesized in six steps and in 25% overall yield starting from commercially available 4-penten-1-ol. The title compound demonstrated 17-fold higher antifungal activity (MIC = 1.5 mM) against Candida albicans ATCC 60193 and Cryptococcus neoformans ATCC 66031 when compared to unsubstituted n-decanoic acid. Our results demonstrate that mid-chain methoxylation appears to be a viable strategy for increasing the fungitoxicity of fatty acids

    \u3cem\u3eN\u3c/em\u3e-Myristoylglutamic acid derivative of 3′-fluoro-3′-deoxythymidine as an organogel

    Get PDF
    Designing microbicidal gels of anti-HIV drugs for local application to prevent HIV infection is a subject of major interest. 3′-Fluoro-3′-deoxythymidine (FLT), a nucleoside reverse transcriptase inhibitor (NRTI), was conjugated with a N-myristoylglutamate scaffold. The conjugate showed gelation at 1% (w/w) in different organic solvents, such as toluene, dichloromethane, and chloroform. The gels were opaque and stable at room temperature. The results indicate that myristoyl glutamate derivative of FLT can form an organogel. The gel could have potential application as a topical anti-HIV microbicidal agent

    Synthesis of β-triphosphotriester pronucleotides

    Get PDF
    Dinucleoside phosphorochloridite were synthesized from phosphorus trichloride and three nucleoside analogues, 3-fluoro-2,3-dideoxythymidine (FLT), 2\u27,3\u27-dideoxy-5-fluoro-3\u27- thiacytidine (FTC), and 2\u27,3\u27-dideoxy-3\u27-thiacytidine (3TC), in a multistep synthesis. Polymerbound N-Boc p-acetoxybenzyl 5¢-O-2¢-deoxythymidine was reacted with dinucleoside phosphorochloridite in the presence of 2,6-lutidine, followed by the reaction with dodecyl alcohol and 5-(ethylthio)-1H-tetrazole, oxidation with tert-butyl hydroperoxide, and acidic cleavage, respectively, to afford the b-triphosphotriester derivatives containing three different nucleosides

    N-Myristoylglutamic Acid Derivative of 3′-Fluoro-3′- Deoxythymidine as an Organogel

    Get PDF
    Designing microbicidal gels of anti-HIV drugs for local application to prevent HIV infection is a subject of major interest. 3′-Fluoro-3′-deoxythymidine (FLT), a nucleoside reverse transcriptase inhibitor (NRTI), was conjugated with a N-myristoylglutamate scaffold. The conjugate showed gelation at 1% (w/w) in different organic solvents, such as toluene, dichloromethane, and chloroform. The gels were opaque and stable at room temperature. The results indicate that myristoyl glutamate derivative of FLT can form an organogel. The gel could have potential application as a topical anti-HIV microbicidal agent

    Synthesis and antifungal properties of α-methoxy and α-hydroxyl substituted 4-thiatetradecanoic acids

    Get PDF
    4-Thiatetradecanoic acid exhibited weak antifungal activities against Candida albicans (ATCC 60193), Cryptococcus neoformans (ATCC 66031), and Aspergillus niger (ATCC 16404) (MIC = 4.8–12.7 mM). It has been demonstrated that α-methoxylation efficiently blocks β-oxidation and significantly improve the antifungal activities of fatty acids. We examined whether antifungal activity of 4-thiatetradecanoic acid can be improved by α-substitution. The unprecedented (±)-2-hydroxy-4-thiatetradecanoic acid was synthesized in four steps (20% overall yield), while the (±)-2-methoxy-4-thiatetradecanoic acid was synthesized in five steps (14% overall yield) starting from 1-decanethiol. The key step in the synthesis was the hydrolysis of a trimethylsilyloxynitrile. In general, the novel (±)-2-methoxy-4-thiatetradecanoic acid displayed significantly higher antifungal activities against C. albicans (ATCC 60193), C. neoformans (ATCC 66031), and A. niger (ATCC 16404) (MIC = 0.8–1.2 mM), when compared with 4-thiatetradecanoic acid. In the case of C. neoformans the (±)-2-hydroxy-4-thiatetradecanoic acid was more fungitoxic (MIC = 0.17 mM) than the α-methoxylated analog, but not as effective against A. niger (MIC = 5.5 mM). The enhanced fungitoxicity of the (±)-2-methoxy-4-thiatetradecanoic acid, as compared to decylthiopropionic acid, might be the result of a longer half-life in the cells due to a blocked β-oxidation pathway which results in more time to exert its toxic effects. Thus, these novel fatty acids may have applications as probes to study fatty acid metabolic routes in human cells

    Self-Assembly of Peptides to Nanostructures

    Get PDF
    The formation of well-ordered nanostructures through self-assembly of diverse organic and inorganic building blocks has drawn much attention owing to their potential applications in biology and chemistry. Among all organic building blocks, peptides are one of the most promising platforms due to their biocompatibility, chemical diversity, and resemblance with proteins. Inspired from the protein assembly in biological systems, various self-assembled peptide structures have been constructed using several amino acids and sequences. This review focuses on this emerging area, the recent advances in peptide self-assembly, and formation of different nanostructures, such as tubular, fibers, vesicles, spherical, and red coil structures. While different peptide nanostructures are discovered, potential applications will be explored in drug delivery, tissue engineering, wound healing, and surfactants

    Synthesis of Nucleoside Mono-, Di-, and Triphosphoramidates from Solid-Phase cycloSaligenyl Phosphitylating Reagents

    Get PDF
    Chloromethyl polystyrene resin was reacted with 5-hydroxysalicylaldehyde in the presence of potassium carbonate to afford polymer-bound 2-hydroxybenzaldehyde. Subsequent reduction with borane solution produced polymer-bound 2-hydroxybenzyl alcohol. The reaction of immobilized 2-hydroxybenzyl alcohol with appropriate phosphitylating reagents yielded solid-phase cycloSaligenyl mono-, di-, and triphosphitylating reagents, which were reacted with unprotected nucleosides, followed by iodine oxidation, deprotection of cyanoethoxy groups, and the basic cleavage, respectively, to afford 5′-O-nucleoside mono-, di-, and triphosphoramidates in 52−73% overall yield

    Plasma Pharmacokinetics and Tissue Disposition of Novel Dextran- Methylprednisolone Conjugates with Peptide Linkers in Rats

    Get PDF
    The plasma and tissue disposition of two novel dextran prodrugs of methylprednisolone (MP) containing one (DMP-1) or five (DMP-5) amino acids as linkers were studied in rats. Single 5-mg/kg doses (MP equivalent) of each prodrug or MP were administered intravenously, and blood and tissue samples were collected. Prodrug and drug concentrations were quantitated using HPLC, and noncompartmental pharmacokinetic parameters were estimated. Whereas conjugation of MP with dextran in both prodrugs substantially decreased the clearance of the drug by ∼200-fold, the accumulations of the drug in the liver, spleen, and kidneys were significantly increased by conjugation. However, the extent of accumulation of DMP-1 in these tissues was substantially greater than that for DMP-5. Substantial amounts of MP were regenerated from both prodrugs in the liver and spleen, with the rate of release from DMP-5 being twice as fast as that from DMP-1. However, the AUCs of MP regenerated from DMP-1 in the liver and spleen were substantially higher than those after DMP-5. In contrast, in the kidneys, the AUC of MP regenerated from DMP-5 was higher than that after DMP-1 administration. These data suggest that DMP-1 may be more suitable than DMP-5 for targeting immunosuppression to the liver and spleen
    • …
    corecore