84 research outputs found

    Barkhausen effect in steels and its dependence on surface condition

    Get PDF
    Micromagnetic Barkhausen signals from magnetic materials originate from the discontinuous changes in magnetization under the action of a changing applied magnetic field.Barkhausen emissions that are detected by a sense coil come predominantly from a surface layer. In iron based materials this layer is about 500 μm thick. The Barkhausen signal is affected by changes in material microstructure and the presence of residual stress, since these affect the dynamics of domain wall motion. The selective attenuation of high frequency components of the Barkhausen signal due to eddy currents in electrically conducting materials is used to evaluate changes in material condition at different depths inside the material.Barkhausen measurements on specimens subjected to different thermal treatment during surface conditioning procedures are presented. Also presented for comparison are analysis of the material condition using x-ray diffraction for assessment of residual stress, and microhardness measurements which evaluate the surface microstructure condition. The results show that Barkhausen emissions can be utilized to evaluate changes in the surface condition of materials

    Effects of surface condition on Barkhausen emissions from steel

    Get PDF
    Temperature changes during mechanical processing such as grinding of steel parts can cause phase changes in the microstructure. Thermal shock during the process can give rise to localized surface residual stress. The net result can be reduced wear resistance and fatigue life leading to early failure during service. Effective methods for the detection of such damage are necessary. Barkhausen emissions, which arise from discontinuous motion of domain walls, are sensitive to microstructual changes that affect domain dynamics. Detected Barkhausen signals are predominantly from a surface layer about 200 μm thick, those from deeper being attenuated due to eddy currents. An analysis of the detected signals can provide an indication of the surface condition of the material.Barkhausen signals from parts ground under controlled conditions were found to be dependent on the grinding process conditions. The signal changes were consistent with residual stress measured by x‐ray diffraction and with hardness measurements that are indicative of changes in microstructure

    Apparatus and method for on-line barkhausen measurement

    Get PDF
    Apparatus and method for measuring the Barkhausen signal of a moving magnetic film, ribbon or fiber wherein first and second stationary electromagnet coils are arranged and separated by a distance, d, along the path of movement of the film, ribbon or fiber. The first and second coils are energized in a manner to generate first and second opposing DC magnetic fields through which the moving film, ribbon or fiber passes along its path of movement. As the film, ribbon or fiber moves through the first and second opposing magnetic fields at a velocity, v, it experiences one complete cycle of magnetization in a period of time equal to d/v. A stationary third signal pick-up coil is disposed between the first and second coils to detect the Barkhausen signal from the moving film, ribbon or fiber. The pick-up coil typically is disposed midway between the first and second coils where the Barkhausen signal will be approximately maximum
    corecore