457 research outputs found

    Sulfoxides as an intramolecular sulfenylating agent for indoles and diverse applications of the sulfide-sulfoxide redox cycle in organic chemistry

    Get PDF
    This dissertation involves study of various aspects of sulfoxide chemistry. Specifically designed t-butyl and propanenitrile sulfoxides tethered to indole-2-carboxamide were used as a source of intramolecular sulfenylating agents to synthesize novel indolo[3,2-b]-1-5-benzothiazepinones which are structurally analogous to the other biologically active benzothiazepinones. This study reveals that the intramolecular cyclization of sulfoxide follows an electrophilic sulfenylation (Sulfoxide Electrophilic Sulfenylation, SES) reaction pathway. Evidence of the absence of sulfenic acid as a transient reactive intermediate in such intramolecular cyclization is also provided. In another study, sulfoxide was used as a “protecting group” of thioether to synthesize 8-membered, indole substituted, thiazocine-2-acetic acid derivative via Ring Closing Metathesis (RCM). Protection (oxidation) of inert (to RCM) sulfide to sulfoxide followed by RCM produced cyclized product in good yields. Deprotection (reduction) of sulfoxide was achieved using Lawessons Reagent (L.R.). Application of the sulfide-sulfoxide redox cycle to solve the existing difficulties in using RCM methodology to thioethers is illustrated. A new design of a “molecular brake”, based on the sulfide-sulfoxide redox cycle is described. N-Ar rotation in simple isoindolines is controlled by the oxidation state of the proximate sulfur atom. Sulfide [S(II)] shows “free” [brake OFF] N-Ar rotation whereas sulfoxide displayed hindered [brake ON] N-Ar rotation. The semi-empirical molecular orbital (PM3) calculations revealed concerted pyramidalization of amidic nitrogen with N-Ar rotation

    Study protocol for a randomised controlled trial of electronic cigarettes versus nicotine patch for smoking cessation

    Get PDF
    PMCID: PMC3602285This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Algorithm for Solving Tri-diagonal Finite Volume Discretized Linear Systems

    Get PDF
    In this paper we present efficient computational algorithms for solving finite volume discretized tri-diagonal linear systems. The implementation of the algorithm for steady state finite volume structured grids linear system using MS Excel is presented. An example is given in order to illustrate the algorithms

    Fourier Neural Operator Networks: A Fast and General Solver for the Photoacoustic Wave Equation

    Full text link
    Simulation tools for photoacoustic wave propagation have played a key role in advancing photoacoustic imaging by providing quantitative and qualitative insights into parameters affecting image quality. Classical methods for numerically solving the photoacoustic wave equation relies on a fine discretization of space and can become computationally expensive for large computational grids. In this work, we apply Fourier Neural Operator (FNO) networks as a fast data-driven deep learning method for solving the 2D photoacoustic wave equation in a homogeneous medium. Comparisons between the FNO network and pseudo-spectral time domain approach demonstrated that the FNO network generated comparable simulations with small errors and was several orders of magnitude faster. Moreover, the FNO network was generalizable and can generate simulations not observed in the training data
    • …
    corecore