20 research outputs found
Onchocerciasis prevalence, human migration and risks for onchocerciasis elimination in the Upper Mouhoun, Nakambé and Nazinon river basins in Burkina Faso.
Historically, the whole of Burkina Faso was considered to be endemic for onchocerciasis (except a small area in the far north of the country) with prevalence rates 60-80%, but all endemic areas were included in the World Health Organisation Onchocerciasis Control Programme, which operated a system of vector control by larviciding beginning in 1974. In Burkina Faso larviciding had been phased out by 1989 when it was considered that onchocerciasis had been reduced to levels below the transmission breakpoint (and any residual infections would disappear without further intervention). There was never any mass drug administration against onchocerciasis in Burkina Faso, except in the Bougouriba and Comoé river basins (from 1996 and 2011 to present respectively) because in each of these two areas there was a resurgence of infection, and in parts of the Nakambé River basin and Sissili River basin from 1992 to 1998. However, mass drug administration with ivermectin was also phased in across the whole country starting in 2000 using ivermectin against lymphatic filariasis and is currently being phased out (depending upon the epidemiological parameters). In this publication we report a new epidemiological survey for onchocerciasis which was carried out in 2014 in the Upper Mouhoun, Nakambé and Nazinon river basins in Burkina Faso to evaluate the prevalence and intensity of infection of onchocerciasis. A total of 11,195 people from 61 villages were examined across these three river basins, and onchocerciasis prevalence by skin-snip was below 5% in all villages, below 1% in 57 villages (93% of 61 villages) and zero in 47. In the 14 villages with positive skin snips, prevalence figures ranged from 0.31% to 3.50%. During the survey 31 infected individuals were found. All of them were Burkinabé, of whom 30 had a recent history of residence in Côte d'Ivoire (with a range of 0.5 to 73 microfilariae per skin-snip from two snips per person) and only one had no history of migration and presumably had an autochthonous infection (mean of 0.5 microfilariae per skin snip from two snips). According to parasitological indicators listed by the World Health Organization African Programme for Onchocerciasis Control in 2010, the situation for onchocerciasis was considered to be satisfactory in all three river basins and probably below the transmission threshold, in which case the disease should disappear naturally without the need for further intervention in the absence of continuing immigration. However, the results clearly indicate that infected persons coming from endemic zones of Côte d'Ivoire are settling in small communities which are otherwise nearly free from onchocerciasis in Burkina Faso. They are thus a source of continuing re-introduction of the parasite into the basins and could be a risk for the achievement of onchocerciasis elimination in all three basins. This would justify the continuation of periodic epidemiological surveys to monitor the possible recrudescence of the disease, and entomological (vector) surveys should be undertaken to assess and monitor the residual transmission
Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology
Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care
Genetic drivers of heterogeneity in type 2 diabetes pathophysiology
Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
Data for: Onchocerciasis prevalence, human migration and risks for onchocerciasis elimination in the Upper Mouhoun, Nakambé and Nazinon river basins in Burkina Faso
The data relate to historical epidemiological surveys for the prevalence in onchocerciasis in some areas in Burkina Faso
The impact of ivermectin on onchocerciasis in villages co-endemic for lymphatic filariasis in an area of onchocerciasis recrudescence in Burkina Faso.
In Burkina Faso, onchocerciasis was no longer a public health problem when the WHO Onchocerciasis Control Programme in West Africa closed at the end in 2002. However, epidemiological surveillance carried out from November 2010 to February of 2011, showed a recrudescence of infection in the Cascades Region. This finding was made at a time when ivermectin, a drug recommended for the treatment of both onchocerciasis and lymphatic filariasis, had been distributed in this area since 2004 for the elimination of lymphatic filariasis. It was surprising that ivermectin distributed for treating lymphatic filariasis had not prevented the recrudescence of onchocerciasis. Faced with this situation, the aim of our study was to evaluate the effectiveness of ivermectin on the onchocerciasis parasite. The percentage reduction in microfilarial load after treatment with ivermectin was used as a proxy measure for assessing possible resistance. A cohort study was carried out with 130 individuals who had tested positive for microfilariae of Onchocerca volvulus in 2010 using microscopic examination of skin-snip biopsies from five endemic villages. Subjects were followed from July 2011 to June 2012. The microfilarial load of each individual was enumerated by skin-snip biopsy in 2010, prior to the first ivermectin treatment against onchocerciasis under community guidelines. All individuals received two ivermectin treatments six months apart. In 2012, the microfilarial loads were determined again, six months after the second round of ivermectin and the reductions in parasite loads were calculated to measure the impact of the drug. The percentage reduction of the microfilarial loads ranged from 87% to 98% in the villages. In all villages, there was a statistically significant difference between the average microfilarial loads in 2010 and 2012. The level of reduction of microfilarial loads suggests that ivermectin is effective against the recrudescent population of O. volvulus in Cascades Region of Burkina Faso. Further investigations would be necessary to determine the causes of the recrudescence of onchocerciasis. (For French language abstract, see S1 Alternative Language Abstract-Translation of the Abstract into French by the authors.)
Recommended from our members
Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data
Abstract: Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers