57 research outputs found

    Influence of Electrification Pathways in the Electricity Sector of Ethiopia—Policy Implications Linking Spatial Electrification Analysis and Medium to Long-Term Energy Planning

    Get PDF
    Ethiopia is a low-income country, with low electricity access (45%) and an inefficient power transmission network. The government aims to achieve universal access and become an electricity exporter in the region by 2025. This study provides an invaluable perspective on different aspects of Ethiopia’s energy transition, focusing on achieving universal access and covering the country’s electricity needs during 2015–2065. We co-developed and investigated three scenarios to examine the policy and technology levels available to the government to meet their national priorities. To conduct this analysis, we soft-linked OnSSET, a modelling tool used for geospatial analysis, with OSeMOSYS, a cost-optimization modelling tool used for medium to long-run energy planning. Our results show that the country needs to diversify its power generation system to achieve universal access and cover its future electricity needs by increasing its overall carbon dioxide emissions and fully exploit hydropower. With the aim of achieving universal access by 2025, the newly electrified population is supplied primarily by the grid (65%), followed by stand-alone (32%) technologies. Similarly, until 2065, most of the electrified people by 2025 will continue to be grid-connected (99%). The country’s exports will increase to 17 TWh by 2065, up from 832 GWh in 2015, leading to a cumulative rise in electricity export revenues of 184 billion USD

    Energy system development pathways for Ethiopia: Final project report

    Get PDF
    This report forms a deliverable of the Energy System Development Pathways for Ethiopia (PATHWAYS) project. The project explored pathways for Ethiopia’s electricity system to 2065 with the use of open-source energy system models, and developed local capacity to use and build on those models for the country’s energy planning and policy decision-support. A participatory methodology was adopted, which engaged local experts and stakeholders in the co-creation of knowledge, through multiple and mixed methods of inquiry typically adopted in fields of engineering and the social sciences. Some of these engagement activities included workshops and interviews that drew upon local expertise to shape the narratives and boundaries on the possible futures for Ethiopia’s electricity system, as well as a household survey on energy consumer behaviour. In addition, capacity development workshops were conducted; training students, academics, and staff of the government, not-for-profit and the private sector on the use of the Open-Source Energy System Modelling framework (OSeMOSYS). This report provides the synthesised findings of the project and highlights ways of building on its activities

    Capacity development and knowledge transfer on the climate, land, water and energy nexus

    Get PDF
    Applying the concept of the nexus of climate, land, energy and water systems (CLEWs) to sustainable development requires the integration of knowledge from different disciplines to solve complicated multi-systems challenges. Such knowledge and expertise are not solely situated in scientific research’s theoretical realm (i.e. branch of knowledge). For the approach to be successful, integration is also required in a variety of decision spaces. The development of nexus knowledge, which we define as information related to systems’ physical, natural and socioeconomic interactions, broadly emerged from project-oriented research and case study applications, extending the system’s coverage to several resource systems, climate and governance

    Selected 'Starter kit' energy system modelling data for selected countries in Africa, East Asia, and South America (#CCG, 2021)

    Get PDF
    Energy system modeling can be used to develop internally-consistent quantified scenarios. These provide key insights needed to mobilise finance, understand market development, infrastructure deployment and the associated role of institutions, and generally support improved policymaking. However, access to data is often a barrier to starting energy system modeling, especially in developing countries, thereby causing delays to decision making. Therefore, this article provides data that can be used to create a simple zero-order energy system model for a range of developing countries in Africa, East Asia, and South America, which can act as a starting point for further model development and scenario analysis. The data are collected entirely from publicly available and accessible sources, including the websites and databases of international organisations, journal articles, and existing modeling studies. This means that the datasets can be easily updated based on the latest available information or more detailed and accurate local data. As an example, these data were also used to calibrate a simple energy system model for Kenya using the Open Source Energy Modeling System (OSeMOSYS) and three stylized scenarios (Fossil Future, Least Cost and Net Zero by 2050) for 2020–2050. The assumptions used and the results of these scenarios are presented in the appendix as an illustrative example of what can be done with these data. This simple model can be adapted and further developed by in-country analysts and academics, providing a platform for future work

    The Climate, Land, Energy, and Water systems (CLEWs) framework: a retrospective of activities and advances to 2019

    Get PDF
    Population growth, urbanization and economic development drive the use of resources. Securing access to essential services such as energy, water, and food, while achieving sustainable development, require that policy and planning processes follow an integrated approach. The 'Climate-, Land-, Energy- and Water-systems' (CLEWs) framework assists the exploration of interactions between (and within) CLEW systems via quantitative means. The approach was first introduced by the International Atomic Energy Agency to conduct an integrated systems analysis of a biofuel chain. The framework assists the exploration of interactions between (and within) CLEW systems via quantitative means. Its multi-institutional application to the case of Mauritius in 2012 initiated the deployment of the framework. A vast number of completed and ongoing applications of CLEWs span different spatial and temporal scales, discussing two or more resource interactions under different political contexts. Also, the studies vary in purpose. This shapes the methods that support CLEWs-type analyses. In this paper, we detail the main steps of the CLEWs framework in perspective to its application over the years. We summarise and compare key applications, both published in the scientific literature, as working papers and reports by international organizations. We discuss differences in terms of geographic scope, purpose, interactions represented, analytical approach and stakeholder involvement. In addition, we review other assessments, which contributed to the advancement of the CLEWs framework. The paper delivers recommendations for the future development of the framework, as well as keys to success in this type of evaluations

    Modeling Negotiations in Group Decision Support Systems

    No full text
    . Group decision making processes are usually characterized by multiple goals and conflicting arguments, brought up by decision makers with different backgrounds and interests. This paper describes a computational model of negotiation and argumentation, by which participants can express their claims and judgements, aiming at informing or convincing. The model is able to handle inconsistent, qualitative and incomplete information in cases where one has to weigh multiple criteria for and against the selection of a certain course of action. It is implemented in Java, the aim being to deploy it on the World Wide Web. The basic objects in our terminology are positions, issues, arguments pro and con, and preference relations. The paper describes procedures for consistency checking, preference aggregation and conclusion of issues under discussion. The proposed model combines concepts from various well-established areas, such as Multiple Criteria Decision Making, nonmonotonic reasoning and cog..

    A framework for group decision support systems: Combining AI tools and OR techniques

    No full text
    Work on the implementation of Group Decision Support Systems has to exploit recent advancements of computer science. Existing frameworks for single-user Decision Support Systems, based on well-established Operations Research methods such as Multicriteria Decision Making techniques, have to be integrated with successful technical developments in electronic communication and computing. Starting from the presentation of the related Operations Research background, this paper proceeds by discussing challenges coming from the areas of Computer-Supported Cooperative Work and Information Systems on the World Wide Web platform. Based on this discussion, a framework for an "open", computer-mediated Group Decision Support System is proposed. The term "open" is related to a platform-independent system, which can efficiently support alternative types of goals and control protocols between its users

    Production planning and control in textile industry: A case study

    No full text
    This paper presents an interactive model based system for the management of production in textile production systems focusing on the Master Production Scheduling problem. Because of the special characteristics of the industry, that is mainly the multi-phase process with multiple units per phase, different planning horizons and different production requirements for each phase, the scheduling of these systems becomes quite complex. Apart from a comprehensive presentation of the set of the modules the system is composed of, together with their interrelationships, the above characteristics are analyzed, and their impact on the production control system is explained. The system is also related to two well-known production control systems, namely MRP-II and Optimised Production Technology. The system's attributes are presented with the aid of data structure diagrams, while the complete algorithm concerning the Master Production Scheduling module, in a pseudo-code form, and the corresponding part of the database are illustrated in the Appendix. Keywords: Master Production Scheduling, Decision Support Systems, Production Planning, MRP-II, Textile Industry. 1. Introduction Textile production systems form an interesting area for the study of scheduling problems. The industry has been developed following both vertical integration, particularly among spinning and weaving firms, and horizontal integration, promoted by the idea that a full line of textile products is necessary for effective marketing [1]. Such production systems comprise various page
    • …
    corecore