3,331 research outputs found
Variational separable expansion scheme for two-body Coulomb-scattering problems
We present a separable expansion approximation method for Coulomb-like
potentials which is based on Schwinger variational principle and uses
Coulomb-Sturmian functions as basis states. The new scheme provides faster
convergence with respect to our formerly used non-variational approach.Comment: some typos correcte
Observation of Heteronuclear Feshbach Molecules from a Rb - Rb gas
We report on the observation of ultracold heteronuclear Feshbach molecules.
Starting with a Rb BEC and a cold atomic gas of Rb, we utilize
previously unobserved interspecies Feshbach resonances to create up to 25,000
molecules. Even though the Rb gas is non-degenerate we observe a large
molecular conversion efficiency due to the presence of a quantum degenerate
Rb gas; this represents a key feature of our system. We compare the
molecule creation at two different Feshbach resonances with different
magnetic-field widths. The two Feshbach resonances are located at
G and G. We also directly measure the small
binding energy of the molecules through resonant magnetic-field association.Comment: v2 - minor change
Studying a dual-species BEC with tunable interactions
We report on the observation of controllable spatial separation in a
dual-species Bose-Einstein condensate (BEC) with Rb and Rb.
Interparticle interactions between the different components can change the
miscibility of the two quantum fluids. In our experiments, we clearly observe
the immiscible nature of the two simultaneously Bose-condensed species via
their spatial separation. Furthermore the Rb Feshbach resonance near 155
G is used to change them between miscible and immiscible by tuning the
Rb scattering length. Our apparatus is also able to create Rb
condensates with up to atoms which represents a significant
improvement over previous work
Resonant-state solution of the Faddeev-Merkuriev integral equations for three-body systems with Coulomb potentials
A novel method for calculating resonances in three-body Coulombic systems is
proposed. The Faddeev-Merkuriev integral equations are solved by applying the
Coulomb-Sturmian separable expansion method. The S-state
resonances up to threshold are calculated.Comment: 6 pages, 2 ps figure
Three-potential formalism for the three-body scattering problem with attractive Coulomb interactions
A three-body scattering process in the presence of Coulomb interaction can be
decomposed formally into a two-body single channel, a two-body multichannel and
a genuine three-body scattering. The corresponding integral equations are
coupled Lippmann-Schwinger and Faddeev-Merkuriev integral equations. We solve
them by applying the Coulomb-Sturmian separable expansion method. We present
elastic scattering and reaction cross sections of the system both below
and above the threshold. We found excellent agreements with previous
calculations in most cases.Comment: 12 pages, 3 figure
Recommended from our members
Observation of Heteronuclear Feshbach Molecules from a 85Rb – 87Rb gas
We report on the observation of ultracold heteronuclear Feshbach molecules. Starting with a 87Rb Bose-Einstein condensate and a cold atomic gas of 85Rb, we utilize previously unobserved interspecies Feshbach resonances to create up to 25,000 molecules. Even though the 85Rb gas is nondegenerate, we observe a large molecular conversion efficiency due to the presence of a quantum degenerate 87Rb gas; this represents a key feature of our system. We compare the molecule creation at two different Feshbach resonances with different magnetic-field widths. The two Feshbach resonances are located at 265.44±0.15 G and 372.4±1.3 G. We also directly measure the small binding energy of the molecules through resonant magnetic-field association
CONTRIBUTIONS TO THE BRYOPHYTE FLORA OF THE KOMOVI MTS (MONTENEGRO)
As a result of several field trips made into the Komovi Mts, 200 bryophyte taxa (43 liverworts and 157 mosses) were collected. Four species are reported for the first time in the country. Among the species recorded, six are red-listed in Europe
Soliton crystals in Kerr resonators
Strongly interacting solitons confined to an optical resonator would offer
unique capabilities for experiments in communication, computation, and sensing
with light. Here we report on the discovery of soliton crystals in monolithic
Kerr microresonators-spontaneously and collectively ordered ensembles of
co-propagating solitons whose interactions discretize their allowed temporal
separations. We unambiguously identify and characterize soliton crystals
through analysis of their 'fingerprint' optical spectra, which arise from
spectral interference between the solitons. We identify a rich space of soliton
crystals exhibiting crystallographic defects, and time-domain measurements
directly confirm our inference of their crystal structure. The crystallization
we observe is explained by long-range soliton interactions mediated by
resonator mode degeneracies, and we probe the qualitative difference between
soliton crystals and a soliton liquid that forms in the absence of these
interactions. Our work explores the rich physics of monolithic Kerr resonators
in a new regime of dense soliton occupation and offers a way to greatly
increase the efficiency of Kerr combs; further, the extreme degeneracy of the
configuration space of soliton crystals suggests an implementation for a robust
on-chip optical buffer
Faddeev approach to confined three-quark problems
We propose a method that allows for the efficient solution of the three-body
Faddeev equations in the presence of infinitely rising confinement
interactions. Such a method is useful in calculations of nonrelativistic and
especially semirelativistic constituent quark models. The convergence of the
partial wave series is accelerated and possible spurious contributions in the
Faddeev components are avoided. We demonstrate how the method works with the
example of the Goldstone-boson-exchange chiral quark model for baryons.Comment: 6 page
- …