4,353 research outputs found
Variational separable expansion scheme for two-body Coulomb-scattering problems
We present a separable expansion approximation method for Coulomb-like
potentials which is based on Schwinger variational principle and uses
Coulomb-Sturmian functions as basis states. The new scheme provides faster
convergence with respect to our formerly used non-variational approach.Comment: some typos correcte
Continued fraction representation of the Coulomb Green's operator and unified description of bound, resonant and scattering states
If a quantum mechanical Hamiltonian has an infinite symmetric tridiagonal
(Jacobi) matrix form in some discrete Hilbert-space basis representation, then
its Green's operator can be constructed in terms of a continued fraction. As an
illustrative example we discuss the Coulomb Green's operator in
Coulomb-Sturmian basis representation. Based on this representation, a quantum
mechanical approximation method for solving Lippmann-Schwinger integral
equations can be established, which is equally applicable for bound-, resonant-
and scattering-state problems with free and Coulombic asymptotics as well. The
performance of this technique is illustrated with a detailed investigation of a
nuclear potential describing the interaction of two particles.Comment: 7 pages, 4 ps figures, revised versio
Electron-hydrogen scattering in Faddeev-Merkuriev integral equation approach
Electron-hydrogen scattering is studied in the Faddeev-Merkuriev integral
equation approach. The equations are solved by using the Coulomb-Sturmian
separable expansion technique. We present - and -wave scattering and
reactions cross sections up to the threshold.Comment: 2 eps figure
Observation of Heteronuclear Feshbach Molecules from a Rb - Rb gas
We report on the observation of ultracold heteronuclear Feshbach molecules.
Starting with a Rb BEC and a cold atomic gas of Rb, we utilize
previously unobserved interspecies Feshbach resonances to create up to 25,000
molecules. Even though the Rb gas is non-degenerate we observe a large
molecular conversion efficiency due to the presence of a quantum degenerate
Rb gas; this represents a key feature of our system. We compare the
molecule creation at two different Feshbach resonances with different
magnetic-field widths. The two Feshbach resonances are located at
G and G. We also directly measure the small
binding energy of the molecules through resonant magnetic-field association.Comment: v2 - minor change
Resonant-state solution of the Faddeev-Merkuriev integral equations for three-body systems with Coulomb potentials
A novel method for calculating resonances in three-body Coulombic systems is
proposed. The Faddeev-Merkuriev integral equations are solved by applying the
Coulomb-Sturmian separable expansion method. The S-state
resonances up to threshold are calculated.Comment: 6 pages, 2 ps figure
Hybrid Electro-Optically Modulated Microcombs
Optical frequency combs based on mode-locked lasers have proven to be
invaluable tools for a wide range of applications in precision spectroscopy and
metrology. A novel principle of optical frequency comb generation in
whispering-gallery mode microresonators ("microcombs") has been developed
recently, which represents a promising route towards chip-level integration and
out-of-the-lab use of these devices. Presently, two families of microcombs have
been demonstrated: combs with electronically detectable mode spacing that can
be directly stabilized, and broadband combs with up to octave-spanning spectra
but mode spacings beyond electronic detection limits. However, it has not yet
been possible to achieve these two key requirements simultaneously, as will be
critical for most microcomb applications. Here we present a key step to
overcome this problem by interleaving an electro-optic comb with the spectrum
from a parametric microcomb. This allows, for the first time, direct control
and stabilization of a microcomb spectrum with large mode spacing (>140 GHz)
with no need for an additional mode-locked laser frequency comb. The attained
residual 1-second-instability of the microcomb comb spacing is 10^-15, with a
microwave reference limited absolute instability of 10^-12 at a 140 GHz mode
spacing.Comment: 8 pages, 4 figures; accepted for publication in Physical Review
Letter
Parametric seeding of a microresonator optical frequency comb
We have investigated parametric seeding of a microresonator frequency comb
(microcomb) by way of a pump laser with two electro-optic-modulation sidebands.
We show that the pump-sideband spacing is precisely replicated throughout the
microcomb's optical spectrum, and we demonstrate a record absolute line-spacing
stability for microcombs of at 1 s. The spectrum of a
parametric comb is complex, and often non-equidistant subcombs are observed.
Our results demonstrate that parametric seeding can not only control the
subcombs, but can lead to the generation of a strictly equidistant microcomb
spectrum.Comment: 10 pages, 5 figure
- …