162 research outputs found
Ruthenium-Catalyzed Decarboxylative Rearrangement of 4-Alkenyl-isoxazol-5-ones to Pyrrole Derivatives
Easily accessible isoxazol-5(4H)-ones are useful precursors of heterocycles. In this context, we report the ruthenium-catalyzed transformation of 4-alkenyl-substituted isoxazol-5-ones to afford 1H-pyrrole derivatives. The operative conditions were proven to be effective also on cyclohexane-fused isoxazolones giving 4,5,6,7-tetrahydroindoles. The reactions, which allow for access to tri-and tetra-substituted pyrroles in moderate to high yields, occur through decarboxylative ring-opening/ring-closure involving C-H functionalization of the alkenyl moiety
Non-Decarboxylative Ruthenium-Catalyzed Rearrangement of 4-Alkylidene-isoxazol-5-ones to Pyrazole- and Isoxazole-4-carboxylic Acids
Treatment of 4-(2-hydroaminoalkylidenyl)- and 4-(2-hydroxyalkylidenyl)-substituted isoxazol-5(4H)-ones with catalytic amounts of [RuCl2(p-cymene)]2, without any additive, afforded pyrazole- and isoxazole-4-carboxylic acids, respectively. The presence of an intramolecular H-bond in these substrates was the key to divert the classical mechanism toward a ring-opening non-decarboxylative path that is expected to generate a vinyl Ru-nitrenoid intermediate, the cyclization of which affords the rearranged products. A gram scale protocol demonstrated the synthetic applicability of this transformation
In-plane uniaxial anisotropy rotations in (Ga,Mn)As thin films
We show, by SQUID magnetometry, that in (Ga,Mn)As films the in-plane uniaxial
magnetic easy axis is consistently associated with particular crystallographic
directions and that it can be rotated from the [-110] direction to the [110]
direction by low temperature annealing. We show that this behavior is
hole-density-dependent and does not originate from surface anisotropy. The
presence of uniaxial anisotropy as well its dependence on the
hole-concentration and temperature can be explained in terms of the p-d Zener
model of the ferromagnetism assuming a small trigonal distortion.Comment: 4 pages, 6 Postscript figures, uses revtex
Ising Quantum Hall Ferromagnet in Magnetically Doped Quantum Wells
We report on the observation of the Ising quantum Hall ferromagnet with Curie
temperature as high as 2 K in a modulation-doped (Cd,Mn)Te
heterostructure. In this system field-induced crossing of Landau levels occurs
due to the giant spin-splitting effect. Magnetoresistance data, collected over
a wide range of temperatures, magnetic fields, tilt angles, and electron
densities, are discussed taking into account both Coulomb electron-electron
interactions and sd coupling to Mn spin fluctuations. The critical behavior
of the resistance ``spikes'' at corroborates theoretical
suggestions that the ferromagnet is destroyed by domain excitations.Comment: revised, 4 pages, 4 figure
Disorder suppression and precise conductance quantization in constrictions of PbTe quantum wells
Conductance quantization was measured in submicron constrictions of PbTe,
patterned into narrow,12 nm wide quantum wells deposited between
PbEuTe barriers. Because the quantum confinement imposed by
the barriers is much stronger than the lateral one, the one-dimensional
electron energy level structure is very similar to that usually met in
constrictions of AlGaAs/GaAs heterostructures. However, in contrast to any
other system studied so far, we observe precise conductance quantization in
units, {\it despite of significant amount of charged defects in the
vicinity of the constriction}. We show that such extraordinary results is a
consequence of the paraelectric properties of PbTe, namely, the suppression of
long-range tails of the Coulomb potentials due to the huge dielectric constant.Comment: 7 pages, 6 figures, submitted to Phys. Rev.
International forum. an investigation of iron status in blood donors
No abstract availabl
Host biomarkers and combinatorial scores for the detection of serious and invasive bacterial infection in pediatric patients with fever without source.
BACKGROUND
Improved tools are required to detect bacterial infection in children with fever without source (FWS), especially when younger than 3 years old. The aim of the present study was to investigate the diagnostic accuracy of a host signature combining for the first time two viral-induced biomarkers, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and interferon γ-induced protein-10 (IP-10), with a bacterial-induced one, C-reactive protein (CRP), to reliably predict bacterial infection in children with fever without source (FWS) and to compare its performance to routine individual biomarkers (CRP, procalcitonin (PCT), white blood cell and absolute neutrophil counts, TRAIL, and IP-10) and to the Labscore.
METHODS
This was a prospective diagnostic accuracy study conducted in a single tertiary center in children aged less than 3 years old presenting with FWS. Reference standard etiology (bacterial or viral) was assigned by a panel of three independent experts. Diagnostic accuracy (AUC, sensitivity, specificity) of host individual biomarkers and combinatorial scores was evaluated in comparison to reference standard outcomes (expert panel adjudication and microbiological diagnosis).
RESULTS
241 patients were included. 68 of them (28%) were diagnosed with a bacterial infection and 5 (2%) with invasive bacterial infection (IBI). Labscore, ImmunoXpert, and CRP attained the highest AUC values for the detection of bacterial infection, respectively 0.854 (0.804-0.905), 0.827 (0.764-0.890), and 0.807 (0.744-0.869). Labscore and ImmunoXpert outperformed the other single biomarkers with higher sensitivity and/or specificity and showed comparable performance to one another although slightly reduced sensitivity in children < 90 days of age.
CONCLUSION
Labscore and ImmunoXpert demonstrate high diagnostic accuracy for safely discriminating bacterial infection in children with FWS aged under and over 90 days, supporting their adoption in the assessment of febrile patients
Organ Dysfunction in Children With Blood Culture-Proven Sepsis: Comparative Performance of Four Scores in a National Cohort Study.
OBJECTIVES
Previous studies applying Sepsis-3 criteria to children were based on retrospective analyses of PICU cohorts. We aimed to compare organ dysfunction criteria in children with blood culture-proven sepsis, including emergency department, PICU, and ward patients, and to assess relevance of organ dysfunctions for mortality prediction.
DESIGN
We have carried out a nonprespecified, secondary analysis of a prospective dataset collected from September 2011 to December 2015.
SETTING
Emergency departments, wards, and PICUs in 10 tertiary children's hospitals in Switzerland.
PATIENTS
Children younger than 17 years old with blood culture-proven sepsis. We excluded preterm infants and term infants younger than 7 days old.
INTERVENTIONS
None.
MEASUREMENTS AND MAIN RESULTS
We compared the 2005 International Pediatric Sepsis Consensus Conference (IPSCC), Pediatric Logistic Organ Dysfunction-2 (PELOD-2), pediatric Sequential Organ Failure Assessment (pSOFA), and Pediatric Organ Dysfunction Information Update Mandate (PODIUM) scores, measured at blood culture sampling, to predict 30-day mortality. We analyzed 877 sepsis episodes in 807 children, with a 30-day mortality of 4.3%. Percentage with organ dysfunction ranged from 32.7% (IPSCC) to 55.3% (pSOFA). In adjusted analyses, the accuracy for identification of 30-day mortality was area under the curve (AUC) 0.87 (95% CI, 0.82-0.92) for IPSCC, 0.83 (0.76-0.89) for PELOD-2, 0.85 (0.78-0.92) for pSOFA, and 0.85 (0.78-0.91) for PODIUM. When restricting scores to neurologic, respiratory, and cardiovascular dysfunction, the adjusted AUC was 0.89 (0.84-0.94) for IPSCC, 0.85 (0.79-0.91) for PELOD-2, 0.87 (0.81-0.93) for pSOFA, and 0.88 (0.83-0.93) for PODIUM.
CONCLUSIONS
IPSCC, PELOD-2, pSOFA, and PODIUM performed similarly to predict 30-day mortality. Simplified scores restricted to neurologic, respiratory, and cardiovascular dysfunction yielded comparable performance
Organ Dysfunction in Children With Blood Culture-Proven Sepsis: Comparative Performance of Four Scores in a National Cohort Study
Objectives: Previous studies applying Sepsis-3 criteria to children were based on retrospective analyses of PICU cohorts. We aimed to compare organ dysfunction criteria in children with blood culture-proven sepsis, including emergency department, PICU, and ward patients, and to assess relevance of organ dysfunctions for mortality prediction.
Design: We have carried out a nonprespecified, secondary analysis of a prospective dataset collected from September 2011 to December 2015.
Setting: Emergency departments, wards, and PICUs in 10 tertiary children's hospitals in Switzerland.
Patients: Children younger than 17 years old with blood culture-proven sepsis. We excluded preterm infants and term infants younger than 7 days old.
Interventions: None.
Measurements and main results: We compared the 2005 International Pediatric Sepsis Consensus Conference (IPSCC), Pediatric Logistic Organ Dysfunction-2 (PELOD-2), pediatric Sequential Organ Failure Assessment (pSOFA), and Pediatric Organ Dysfunction Information Update Mandate (PODIUM) scores, measured at blood culture sampling, to predict 30-day mortality. We analyzed 877 sepsis episodes in 807 children, with a 30-day mortality of 4.3%. Percentage with organ dysfunction ranged from 32.7% (IPSCC) to 55.3% (pSOFA). In adjusted analyses, the accuracy for identification of 30-day mortality was area under the curve (AUC) 0.87 (95% CI, 0.82-0.92) for IPSCC, 0.83 (0.76-0.89) for PELOD-2, 0.85 (0.78-0.92) for pSOFA, and 0.85 (0.78-0.91) for PODIUM. When restricting scores to neurologic, respiratory, and cardiovascular dysfunction, the adjusted AUC was 0.89 (0.84-0.94) for IPSCC, 0.85 (0.79-0.91) for PELOD-2, 0.87 (0.81-0.93) for pSOFA, and 0.88 (0.83-0.93) for PODIUM.
Conclusions: IPSCC, PELOD-2, pSOFA, and PODIUM performed similarly to predict 30-day mortality. Simplified scores restricted to neurologic, respiratory, and cardiovascular dysfunction yielded comparable performance
- …