3 research outputs found
Investigating critical metals Ge and Ga in complex sulphide mineral assemblages using LIBS mapping
editorial reviewedLIBS mapping is a powerful tool for visualizing chemical heterogeneity of geological materials [1, 2 and references therein]. Fast data acquisition, minimal sample preparation, multi-elemental detection and high dynamic range are key advantages of LIBS compared to other techniques. In this contribution we show that LIBS maps can provide geologists and engineers with a wealth of information including identification, characterization and quantitation of the different mineral phases, and detection of trace-elements together with their distribution within their host minerals [e.g., 3].
Several ore samples from Kipushi mine, DRC, were selected from the university collection. These ores are known for their mineral complexity and economic value as they contain critical metals such as Ge and Ga.
Analyzing colocalisation of major elements in the extracted LIBS maps allowed the reconstruction of the mineralogy. Detected minerals include chalcopyrite [CuFeS2], bornite [Cu5FeS4], chalcocite [Cu2S], sphalerite [ZnS], galena [PbS], tennantite-(Zn) [Cu6(Cu4Zn2)As4S12S], germanite [Cu13Fe2Ge2S16], renierite [(Cu1+,Zn)11Fe4(Ge4+,As5+)2S16], tungstenite [WS2], betekhtinite [Pb2(Cu,Fe)22-24S15] and a series of non-sulphide gangue minerals. SEM-EDS analyses are planned to check this LIBS-derived mineralogy. Relative abundance and grain size of the different minerals can be easily evaluated by image analysis of the LIBS maps. These minerals are preferential hosts for trace-elements Ga and Ag, with Ga being preferentially enriched in chalcopyrite and, to a lesser extent, in renierite, and Ag occurring within bornite and tennantite, with some migration in fractures affecting other sulphides
Cartographie de luminescence induite par plasma en parallĂšle (ou pas) avec la spectroscopie de plasma induit par laser
editorial reviewedLa luminescence induite par plasma (Plasma-Induced Luminescence, PIL) est une nouvelle technique de luminescence qui utilise les radiations dâun plasma induit par laser comme source dâexcitation[1]. Plusieurs dispositifs expĂ©rimentaux peuvent ĂȘtre utilisĂ©s pour enregistrer la PIL, en utilisant le plasma gĂ©nĂ©rĂ© directement Ă la surface de lâĂ©chantillon[1,2], ou indirectement, câest-Ă -dire dans lâatmosphĂšre[3,4]. La seconde mĂ©thode est complĂštement non-destructive mais ne permet pas lâanalyse conjointe de la composition Ă©lĂ©mentaire par spectroscopie de plasma induit par laser (LIBS).
Nous avons comparĂ© les deux mĂ©thodes appliquĂ©es, entre autres, Ă la calcite (CaCO3), en utilisant un dispositif classique pour la PIL combinĂ©e Ă la LIBS (Figure a), et un autre pour la PIL «indirecte» (Figure b). Lâemploi dâune camĂ©ra couleur synchronisĂ©e permet dâenregistrer des images PIL qui peuvent ĂȘtre assemblĂ©es afin dâobtenir trĂšs rapidement une cartographie de luminescence de la surface dâun Ă©chantillon. En effet, la taille du plasma, qui dĂ©termine lâĂ©tendue de la zone excitĂ©e, est plus grande que le pas de dĂ©placement gĂ©nĂ©ralement fixĂ© lors de lâacquisition des cartographies LIBS. Il est dĂšs lors possible dâaugmenter la longueur du pas et de diminuer ainsi le temps analytique.
Pour les Ă©chantillons testĂ©s, les deux mĂ©thodes fournissent des rĂ©sultats similaires entre eux et similaires aussi Ă ceux obtenus par cathodoluminescence, ce qui laisse Ă penser que les Ă©lectrons sont ici la source principale dâexcitation. Cependant, uniquement les centres de luminescence Ă longue durĂ©e de vie ne sont accessibles car un dĂ©lai de lâordre de quelques millisecondes doit ĂȘtre appliquĂ© entre le tir laser et le dĂ©but de lâenregistrement afin de garantir que le brouillard formĂ© par le plasma refroidit soit complĂštement dissipĂ©.
Références
1. M. Gaft, L. Nagli, Y. Groisman, Optical Materials. 368-375, 34 (2011)
2. M. Gaft, Y. Raichlin, F. Pelascini, G. Panzer, V. Motto-Ros, Spectrochimica Acta Part B. 12-19, 151 (2019)
3. E. Clavé, M. Gaft, V. Motto-Ros, C. Fabre, O. Forni, O. Beyssac, S. Maurice, R.C. Wiens, B. Bousquet, Spectrochimica Acta Part B. 106111, 177 (2021)
4. S. Veltri, M. Barberio, C. Liberatore, M. Sciscio, A. Laramée, L. Palumbo, F. Legaré, P. Antici, App. Phys. Lett. 021114, 110 (2017
LIBS profiles of sedimentary sections: a new tool for paleoclimatic and paleoenvironmental reconstructions?
peer reviewedReconstructing climates and/or environments of the past requires analysis of sedimentary sections based on profiles of various geological data (geochemistry, sedimentology, mineralogy, paleontology, ...). LIBS analysis can be carried out with a fast acquisition rate on minimally-prepared samples, allowing measurement of large geological sample sets such as sedimentary sections.
Here we show preliminary results obtained from a field and a core section to illustrate the potential of LIBS for paleoclimatic and paleoenvironmental studies.
The studied field section consisted in 6 m thick Devonian siliciclastics with varying carbonate content used as a reference for cyclostratigraphy (New York State, USA [1]). 300 samples were analyzed manually in less than two days and the results showed very good match with the XRF measurements previously used for astrochronology, including productivity (Ca) and detrital (Ti, Al, etc.) proxies. Therefore, astronomically-forced climatic cycles could be analyzed based on LIBS data as it is reliably done with XRF.
The studied core section, which consists of 150 m of Ypresian to Bartonian formations (Le Tillet borehole, France) was more challenging for LIBS measurement as it consists of both soft siliciclastic sediments and consolidated carbonate rocks [2]. Therefore, the 157 selected samples were powdered and fixed onto double-sided adhesive and automatically analyzed with the LIBS within about 1 hour. The obtained data, still under interpretation, showed that some elemental ratios such as Cs/k and Li/k exhibit interesting correlations with mineralogical and environmental data (Fig. 1)