21 research outputs found
Severe obesity and diabetes insipidus in a patient with PCSK1 deficiency.
Non-synonymous mutations affecting both alleles of PCSK1 (proprotein convertase 1/3) are associated with obesity and impaired prohormone processing. We report a proband who was compound heterozygous for a maternally inherited frameshift mutation and a paternally inherited 474kb deletion that encompasses PCSK1, representing a novel genetic mechanism underlying this phenotype. Although pro-vasopressin is not a known physiological substrate of PCSK1, the development of central diabetes insipidus in this proband suggests that PCSK1 deficiency can be associated with impaired osmoregulation.ISF and SOR were supported by the Wellcome Trust, the MRC Centre for Obesity and Related Disorders and the UK NIHR Cambridge Biomedical Research Centre.This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S1096719213001145#
An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase
Gene expression profiling has the potential to enhance current methods for the diagnosis of haematological malignancies. Here, we present data on 204 analyses from an international standardization programme that was conducted in 11 laboratories as a prephase to the Microarray Innovations in LEukemia (MILE) study. Each laboratory prepared two cell line samples, together with three replicate leukaemia patient lysates in two distinct stages: (i) a 5-d course of protocol training, and (ii) independent proficiency testing. Unsupervised, supervised, and r2 correlation analyses demonstrated that microarray analysis can be performed with remarkably high intra-laboratory reproducibility and with comparable quality and reliability
The Role of c-MYC in B-Cell Lymphomas: Diagnostic and Molecular Aspects
c-MYC is one of the most essential transcriptional factors, regulating a diverse array of cellular functions, including proliferation, growth, and apoptosis. Dysregulation of c-MYC is essential in the pathogenesis of a number of B-cell lymphomas, but is rarely reported in T-cell lymphomas. c-MYC dysregulation induces lymphomagenesis by loss of the tight control of c-MYC expression, leading to overexpression of intact c-MYC protein, in contrast to the somatic mutations or fusion proteins seen in many other oncogenes. Dysregulation of c-MYC in B-cell lymphomas occurs either as a primary event in Burkitt lymphoma, or secondarily in aggressive lymphomas such as diffuse large B-cell lymphoma, plasmablastic lymphoma, mantle cell lymphoma, or double-hit lymphoma. Secondary c-MYC changes include gene translocation and gene amplification, occurring against a background of complex karyotype, and most often confer aggressive clinical behavior, as evidenced in the double-hit lymphomas. In low-grade B-cell lymphomas, acquisition of c-MYC rearrangement usually results in transformation into highly aggressive lymphomas, with some exceptions. In this review, we discuss the role that c-MYC plays in the pathogenesis of B-cell lymphomas, the molecular alterations that lead to c-MYC dysregulation, and their effect on prognosis and diagnosis in specific types of B-cell lymphoma
Distinct 15q genotypes in Russell-Silver and ring 15 syndromes
Individuals with a ring 15 chromosome [r(15)] and those with Russell- Silver syndrome have short stature, developmental delay, triangular face, and clinodactyly. To assess whether the apparent phenotypic overlap of these conditions reflects a common genetic cause, the extent of deletions in chromosome 15q was determined in 5 patients with r(15), 1 patient with del 15q26.1-qter, and 5 patients with Russell-Silver syndrome. All patients with Russell-Silver syndrome were diploid for genetic markers in distal 15q, indicating that Russell-Silver syndrome in these individuals was unlikely to be related to the expression of single alleles at these or linked genetic loci. At least 3 distinct sites of chromosome breakage close to the telomere were found in the r(15) and del 15q25.1-qter patients, with 1 r(15) patient having both a terminal and an interstitial deletion. Although the patient with del 15q25.1-qter exhibited the largest deletion and the most profound growth retardation, the degree of growth impairment among the r(15) patients was not correlated with the size of the deleted interval. Rather, the parental origin of the ring chromosome in several patients was associated with phenotypes that are also seen in patients with either Prader-Willi (PWS) or Angelman (AS) syndromes, conditions that result from uniparental expression of genes on chromosome 15. In fact, unequal representation of chromosome 15 alleles in 1 patient with r(15) suggests the possibility that a mosaic karyotype composed of the constitutional cell line and cell line(s) possibly deficient in the ring chromosome might be present. The PWS-like or AS-like phenotypes could be explained by postzygotic loss of the ring chromosome, leading to uniparental inheritance of the intact chromosome in some tissues of r(15) patients
Further phenotypic delineation of subtelomeric (terminal) 4q deletion with emphasis on intracranial and reproductive anatomy
Abstract Objective To describe selected morphological and developmental features associated with subtelomeric deletion at chromosome 4q. Materials and methods A 21-year old female was brought for gynecologic evaluation of menorrhagia. High-resolution metaphase karyotype and subtelomere fluorescent in-situ hybridization (FISH) analysis were used for genotype determination. Pelvic anatomy was characterized via CT and laparoscopy; MR and CT were used for intracranial imaging. Results A de novo deletion [46,XX del(4)(q32)] was identified cytogenetically and confirmed as a terminal loss via subtelomere FISH. Hand/foot malformation characteristic of deletion at this segment was present. Pelvic CT and laparoscopy revealed normal uterine anatomy. Fallopian tubes appeared grossly unremarkable, and a right ovarian cyst was excised without difficulty. Bilateral broad ligament fibroadipose nodularities were noted adjacent to the uterus between round ligament and fallopian tube. Neurological exam revealed no focal defects, although brain MR identified an abnormal signal intensity at the inferior margin of the globus pallidus, consistent with old lacunar infarct and gliosis. Developmental delay was supported by an observed level of general intellectual function estimated at age seven. Conclusion Terminal deletion of the long arm of chromosome 4 is a rare genetic event associated with a distinctive phenotype dependent on the size of the deletion. Chromosomal losses that span the 4q32 band include mental retardation and mild craniofacial anomalies. Here, further characterization of this disorder is offered including precise quantification of the DNA loss, information on brain morphology and pelvic anatomy. Additional studies will be required to characterize the full developmental and physiologic implications of this unusual genetic disorder.</p
Tetrasomy 15q26: A distinct syndrome or Shprintzen-Goldberg syndrome phenocopy?
PURPOSE: The aim of this study was to characterize the clinical phenotype of patients with tetrasomy of the distal 15q chromosome in the form of a neocentric marker chromosome and to evaluate whether the phenotype represents a new clinical syndrome or is a phenocopy of Shprintzen-Goldberg syndrome.
METHODS: We carried out comprehensive clinical evaluation of four patients who were identified with a supernumerary marker chromosome. The marker chromosome was characterized by G-banding, fluorescence in situ hybridization, single nucleotide polymorphism oligonucleotide microarray analysis, and immunofluorescence with antibodies to centromere protein C.
RESULTS: The marker chromosomes were categorized as being neocentric with all showing tetrasomy for regions distal to 15q25 and the common region of overlap being 15q26→qter.
CONCLUSION: Tetrasomy of 15q26 likely results in a distinct syndrome as the patients with tetrasomy 15q26 share a strikingly more consistent phenotype than do the patients with Shprintzen-Goldberg syndrome, who show remarkable clinical variation