3 research outputs found

    Rapid evolution of female-biased genes among four species of Anopheles malaria mosquitoes.

    Get PDF
    Understanding how phenotypic differences between males and females arise from the sex-biased expression of nearly identical genomes can reveal important insights into the biology and evolution of a species. Among Anopheles mosquito species, these phenotypic differences include vectorial capacity, as it is only females that blood feed and thus transmit human malaria. Here, we use RNA-seq data from multiple tissues of four vector species spanning the Anopheles phylogeny to explore the genomic and evolutionary properties of sex-biased genes. We find that, in these mosquitoes, in contrast to what has been found in many other organisms, female-biased genes are more rapidly evolving in sequence, expression, and genic turnover than male-biased genes. Our results suggest that this atypical pattern may be due to the combination of sex-specific life history challenges encountered by females, such as blood feeding. Furthermore, female propensity to mate only once in nature in male swarms likely diminishes sexual selection of post-reproductive traits related to sperm competition among males. We also develop a comparative framework to systematically explore tissue- and sex-specific splicing to document its conservation throughout the genus and identify a set of candidate genes for future functional analyses of sex-specific isoform usage. Finally, our data reveal that the deficit of male-biased genes on the X Chromosomes in Anopheles is a conserved feature in this genus and can be directly attributed to chromosome-wide transcriptional regulation that de-masculinizes the X in male reproductive tissues

    Developing CRISPR-based sex-ratio distorters for the genetic control of fruit fly pests: A how to manual

    No full text
    Agricultural pest control using genetic-based methods provides a species-specific and environmentally harmless way for population suppression of fruit flies. One way to improve the efficiency of such methods is through self-limiting, female-eliminating approaches that can alter an insect populations' sex ratio toward males. In this microreview, we summarize recent advances in synthetic sex ratio distorters based on X-chromosome shredding that can induce male-biased progeny. We outline the basic principles to guide the efficient design of an X-shredding system in an XY heterogametic fruit fly species of interest using CRISPR/Cas gene editing, newly developed computational tools, and insect genetic engineering. We also discuss technical aspects and challenges associated with the efficient transferability of this technology in fruit fly pest populations, toward the potential use of this new class of genetic control approaches for pest management purposes. © 2019 Wiley Periodicals, Inc

    Maleness-on-the-Y (MoY) orchestrates male sex determination in major agricultural fruit fly pests

    No full text
    In insects, rapidly evolving primary sex-determining signals are transduced by a conserved regulatory module controlling sexual differentiation. In the agricultural pest Ceratitis capitata (Mediterranean fruit fly, or Medfly), we identified a Y-linked gene, Maleness-on-the-Y (MoY), encoding a small protein that is necessary and sufficient for male development. Silencing or disruption of MoY in XY embryos causes feminization, whereas overexpression of MoY in XX embryos induces masculinization. Crosses between transformed XY females and XX males give rise to males and females, indicating that a Ychromosome can be transmitted by XY females. MoY is Y-linked and functionally conserved in other species of the Tephritidae family, highlighting its potential to serve as a tool for developing more effective control strategies against these major agricultural insect pests. Copyright © 2019 The Authors
    corecore