62 research outputs found

    Open-domain topic identification of out-of-domain utterances using Wikipedia

    Get PDF
    Users of spoken dialogue systems (SDS) expect high quality interactions across a wide range of diverse topics. However, the implementation of SDS capable of responding to every conceivable user utterance in an informative way is a challenging problem. Multi-domain SDS must necessarily identify and deal with out-of-domain (OOD) utterances to generate appropriate responses as users do not always know in advance what domains the SDS can handle. To address this problem, we extend the current state-of-the-art in multi-domain SDS by estimating the topic of OOD utterances using external knowledge representation from Wikipedia. Experimental results on real human-to-human dialogues showed that our approach does not degrade domain prediction performance when compared to the base model. But more significantly, our joint training achieves more accurate predictions of the nearest Wikipedia article by up to about 30% when compared to the benchmarks

    Territorial or nomadic? Geo-social determinants of location-based IT use : a study in Pokémon GO

    Get PDF
    Purpose: Location-based games (LBGs) have afforded novel information technology (IT) developments in how people interact with the physical world. Namely, LBGs have spurred a wave of territoriality (i.e. controlling) and exploration (i.e. discovering) of augmented physical space that are driven by different social dynamics related to group formation, social connectivity and altruism. The aim of this study is to investigate this dynamic and how it is further related to the use intensity of location-based IT. Design/methodology/approach: This work presents a structural equation model that connects social dimensions of play to territorial control and exploration, and playing intensity. The model was tested with sychometric data gathered from a global sample of Pokémon GO players (N = 515). Findings: In the tested sample, players' social self-efficacy and altruism were positively associated with team identification. Team identification, in turn, was positively associated with both territorial control and exploration tendency. Territorial control had a significant relationship with playing intensity; however, exploration tendency did not. This implies territorial control is the stronger predictor of playing intensity. Practical implications: The findings suggest that human primal urges to conquer and control geographical territory may surface in the digital reimagination of physical space. LBGs offer opportunities for making use of new forms of play (territorial control and exploration) in motivating locative behaviours. Originality/value: This research quantifies the relationships between a social predisposition, team identification, territorial control, exploration tendency and playing intensity in the context of Pokémon GO. It contributes new knowledge to the understanding of territorial behaviour (control and exploration) in location-based IT.publishedVersionPeer reviewe

    The impact of using assimilated Aeolus wind data on regional WRF-Chem dust simulations

    Get PDF
    Land–atmosphere interactions govern the process of dust emission and transport. An accurate depiction of these physical processes within numerical weather prediction models allows for better estimating the spatial and temporal distribution of the dust burden and the characterisation of source and recipient areas. In the presented study, the ECMWF-IFS (European Centre for Medium-Range Weather Forecast – Integrated Forecasting System) outputs, produced with and without the assimilation of Aeolus quality-assured Rayleigh–clear and Mie–cloudy horizontal line-of-sight wind profiles, are used as initial or boundary conditions in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to simulate 2-month periods in the spring and autumn of 2020, focusing on a case study in October. The experiments have been performed over the broader eastern Mediterranean and Middle East (EMME) region, which is frequently subjected to dust transport, as it encompasses some of the most active erodible dust sources. Aerosol- and dust-related model outputs (extinction coefficient, optical depth and concentrations) are qualitatively and quantitatively evaluated against ground- and satellite-based observations. Ground-based columnar and vertically resolved aerosol optical properties are acquired through AERONET sun photometers and PollyXT lidar, while near-surface concentrations are taken from EMEP. Satellite-derived vertical dust and columnar aerosol optical properties are acquired through LIVAS (LIdar climatology of Vertical Aerosol Structure) and MIDAS (ModIs Dust AeroSol), respectively. Overall, in cases of either high or low aerosol loadings, the model predictive skill is improved when WRF-Chem simulations are initialised with the meteorological fields of Aeolus wind profiles assimilated by the IFS. The improvement varies in space and time, with the most significant impact observed during the autumn months in the study region. Comparison with observation datasets saw a remarkable improvement in columnar aerosol optical depths, vertically resolved dust mass concentrations and near-surface particulate concentrations in the assimilated run against the control run. Reductions in model biases, either positive or negative, and an increase in the correlation between simulated and observed values was achieved for October 2020.</p

    Lost in translation: Returning germline genetic results in genome-scale cancer research

    Get PDF
    Background: The return of research results (RoR) remains a complex and well-debated issue. Despite the debate, actual data related to the experience of giving individual results back, and the impact these results may have on clinical care and health outcomes, is sorely lacking. Through the work of the Australian Pancreatic Cancer Genome Initiative (APGI) we: (1) delineate the pathway back to the patient where actionable research data were identified; and (2) report the clinical utilisation of individual results returned. Using this experience, we discuss barriers and opportunities associated with a comprehensive process of RoR in large-scale genomic research that may be useful for others developing their own policies. Methods: We performed whole-genome (n = 184) and exome (n = 208) sequencing of matched tumour-normal DNA pairs from 392 patients with sporadic pancreatic cancer (PC) as part of the APGI. We identified pathogenic germline mutations in candidate genes (n = 130) with established predisposition to PC or medium-high penetrance genes with well-defined cancer associated syndromes or phenotypes. Variants from candidate genes were annotated and classified according to international guidelines. Variants were considered actionable if clinical utility was established, with regard to prevention, diagnosis, prognostication and/or therapy. Results: A total of 48,904 germline variants were identified, with 2356 unique variants undergoing annotation and in silico classification. Twenty cases were deemed actionable and were returned via previously described RoR framework, representing an actionable finding rate of 5.1%. Overall, 1.78% of our cohort experienced clinical benefit from RoR. Conclusion: Returning research results within the context of large-scale genomics research is a labour-intensive, highly variable, complex operation. Results that warrant action are not infrequent, but the prevalence of those who experience a clinical difference as a result of returning individual results is currently low

    Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma is a lethal cancer with fewer than 7% of patients surviving past 5 years. T-cell immunity has been linked to the exceptional outcome of the few long-term survivors1,2, yet the relevant antigens remain unknown. Here we use genetic, immunohistochemical and transcriptional immunoprofiling, computational biophysics, and functional assays to identify T-cell antigens in long-term survivors of pancreatic cancer. Using whole-exome sequencing and in silico neoantigen prediction, we found that tumours with both the highest neoantigen number and the most abundant CD8+ T-cell infiltrates, but neither alone, stratified patients with the longest survival. Investigating the specific neoantigen qualities promoting T-cell activation in long-term survivors, we discovered that these individuals were enriched in neoantigen qualities defined by a fitness model, and neoantigens in the tumour antigen MUC16 (also known as CA125). A neoantigen quality fitness model conferring greater immunogenicity to neoantigens with differential presentation and homology to infectious disease-derived peptides identified long-term survivors in two independent datasets, whereas a neoantigen quantity model ascribing greater immunogenicity to increasing neoantigen number alone did not. We detected intratumoural and lasting circulating T-cell reactivity to both high-quality and MUC16 neoantigens in long-term survivors of pancreatic cancer, including clones with specificity to both high-quality neoantigens and predicted cross-reactive microbial epitopes, consistent with neoantigen molecular mimicry. Notably, we observed selective loss of high-quality and MUC16 neoantigenic clones on metastatic progression, suggesting neoantigen immunoediting. Our results identify neoantigens with unique qualities as T-cell targets in pancreatic ductal adenocarcinoma. More broadly, we identify neoantigen quality as a biomarker for immunogenic tumours that may guide the application of immunotherapies
    corecore