2 research outputs found
Virtual and Augmented Reality in Medical Education
Virtual reality (VR) and augmented reality (AR) are two contemporary simulation models that are currently upgrading medical education. VR provides a 3D and dynamic view of structures and the ability of the user to interact with them. The recent technological advances in haptics, display systems, and motion detection allow the user to have a realistic and interactive experience, enabling VR to be ideal for training in hands-on procedures. Consequently, surgical and other interventional procedures are the main fields of application of VR. AR provides the ability of projecting virtual information and structures over physical objects, thus enhancing or altering the real environment. The integration of AR applications in the understanding of anatomical structures and physiological mechanisms seems to be beneficial. Studies have tried to demonstrate the validity and educational effect of many VR and AR applications, in many different areas, employed via various hardware platforms. Some of them even propose a curriculum that integrates these methods. This chapter provides a brief history of VR and AR in medicine, as well as the principles and standards of their function. Finally, the studies that show the effect of the implementation of these methods in different fields of medical training are summarized and presented
Smoking-Induced Disturbed Sleep. A Distinct Sleep-Related Disorder Pattern?
The relationship between smoking and sleep disorders has not been investigated sufficiently yet. Many aspects, especially regarding non-obstructive sleep apnea–hypopnea (OSA)-related disorders, are still to be addressed. All adult patients who visited a tertiary sleep clinic and provided information about their smoking history were included in this cross-sectional study. In total, 4347 patients were divided into current, former and never smokers, while current and former smokers were also grouped, forming a group of ever smokers. Sleep-related characteristics, derived from questionnaires and sleep studies, were compared between those groups. Ever smokers presented with significantly greater body mass index (BMI), neck and waist circumference and with increased frequency of metabolic and cardiovascular co-morbidities compared to never smokers. They also presented significantly higher apnea–hypopnea index (AHI) compared to never smokers (34.4 ± 24.6 events/h vs. 31.7 ± 23.6 events/h, p p = 0.13) did not differ between groups. Ever smokers, compared to never smokers, presented more frequent episodes of sleep talking (30.8% vs. 26.6%, p = 0.004), abnormal movements (31.1% vs. 27.7%, p = 0.021), restless sleep (59.1% vs. 51.6%, p p = 0.002) during sleep. Those were more evident in current smokers and correlated significantly with increasing AHI. These significant findings suggest the existence of a smoking-induced disturbed sleep pattern