125 research outputs found

    Hamilton-Jacobi method for Domain Walls and Cosmologies

    Full text link
    We use Hamiltonian methods to study curved domain walls and cosmologies. This leads naturally to first order equations for all domain walls and cosmologies foliated by slices of maximal symmetry. For Minkowski and AdS-sliced domain walls (flat and closed FLRW cosmologies) we recover a recent result concerning their (pseudo)supersymmetry. We show how domain-wall stability is consistent with the instability of adS vacua that violate the Breitenlohner-Freedman bound. We also explore the relationship to Hamilton-Jacobi theory and compute the wave-function of a 3-dimensional closed universe evolving towards de Sitter spacetime.Comment: 18 pages; v2: typos corrected, one ref added, version to appear in PR

    Holographic Coulomb branch vevs

    Full text link
    We compute holographically the vevs of all chiral primary operators for supergravity solutions corresponding to the Coulomb branch of N=4 SYM and find exact agreement with the corresponding field theory computation. Using the dictionary between 10d geometries and field theory developed to extract these vevs, we propose a gravity dual of a half supersymmetric deformation of N=4 SYM by certain irrelevant operators.Comment: 16 pages, v2 corrections in appendi

    Holographic Construction of Excited CFT States

    Full text link
    We present a systematic construction of bulk solutions that are dual to CFT excited states. The bulk solution is constructed perturbatively in bulk fields. The linearised solution is universal and depends only on the conformal dimension of the primary operator that is associated with the state via the operator-state correspondence, while higher order terms depend on detailed properties of the operator, such as its OPE with itself and generally involve many bulk fields. We illustrate the discussion with the holographic construction of the universal part of the solution for states of two dimensional CFTs, either on RĂ—S1R \times S^1 or on R1,1R^{1,1}. We compute the 1-point function both in the CFT and in the bulk, finding exact agreement. We comment on the relation with other reconstruction approaches.Comment: 26 pages, 4 figures, v2: comments adde

    Phases of planar AdS black holes with axionic charge

    Get PDF
    Planar AdS black holes with axionic charge have finite DC conductivity due to momentum relaxation. We obtain a new family of exact asymptotically AdS4_4 black branes with scalar hair, carrying magnetic and axion charge, and we study the thermodynamics and dynamic stability of these, as well as of a number of previously known electric and dyonic solutions with axion charge and scalar hair. The scalar hair for all solutions satisfy mixed boundary conditions, which lead to modified holographic Ward identities, conserved charges and free energy, relative to those following from the more standard Dirichlet boundary conditions. We show that properly accounting for the scalar boundary conditions leads to well defined first law and other thermodynamic relations. Finally, we compute the holographic quantum effective potential for the dual scalar operator and show that dynamical stability of the hairy black branes is equivalent to positivity of the energy density

    The Holographic Universe

    Get PDF
    We present a holographic description of four-dimensional single-scalar inflationary universes in terms of a three-dimensional quantum field theory. The holographic description correctly reproduces standard inflationary predictions in their regime of applicability. In the opposite case, wherein gravity is strongly coupled at early times, we propose a holographic description in terms of perturbative QFT and present models capable of satisfying the current observational constraints while exhibiting a phenomenology distinct from standard inflation. This provides a qualitatively new method for generating a nearly scale-invariant spectrum of primordial cosmological perturbations.Comment: 20 pages, 5 figs; extended version of arXiv:0907.5542 including background material and detailed derivations. To appear in Proceedings of 1st Mediterranean Conference on Classical and Quantum Gravit

    Positivity of energy for asymptotically locally AdS spacetimes

    Full text link
    We derive necessary conditions for the spinorial Witten-Nester energy to be well-defined for asymptotically locally AdS spacetimes. We find that the conformal boundary should admit a spinor satisfying certain differential conditions and in odd dimensions the boundary metric should be conformally Einstein. We show that these conditions are satisfied by asymptotically AdS spacetimes. The gravitational energy (obtained using the holographic stress energy tensor) and the spinorial energy are equal in even dimensions and differ by a bounded quantity related to the conformal anomaly in odd dimensions.Comment: 36 pages, 1 figure; minor corrections, JHEP versio

    Kaluza-Klein Holography

    Full text link
    We construct a holographic map between asymptotically AdS_5 x S^5 solutions of 10d supergravity and vacuum expectation values of gauge invariant operators of the dual QFT. The ingredients that enter in the construction are (i) gauge invariant variables so that the KK reduction is independent of any choice of gauge fixing; (ii) the non-linear KK reduction map from 10 to 5 dimensions (constructed perturbatively in the number of fields); (iii) application of holographic renormalization. A non-trivial role in the last step is played by extremal couplings. This map allows one to reliably compute vevs of operators dual to any KK fields. As an application we consider a Coulomb branch solution and compute the first two non-trivial vevs, involving operators of dimension 2 and 4, and reproduce the field theory result, in agreement with non-renormalization theorems. This constitutes the first quantitative test of the gravity/gauge theory duality away from the conformal point involving a vev of an operator dual to a KK field (which is not one of the gauged supergravity fields).Comment: 47 pages, v2: minor improvements, version to appear in JHE

    Anatomy of bubbling solutions

    Full text link
    We present a comprehensive analysis of holography for the bubbling solutions of Lin-Lunin-Maldacena. These solutions are uniquely determined by a coloring of a 2-plane, which was argued to correspond to the phase space of free fermions. We show that in general this phase space distribution does not determine fully the 1/2 BPS state of N=4 SYM that the gravitational solution is dual to, but it does determine it enough so that vevs of all single trace 1/2 BPS operators in that state are uniquely determined to leading order in the large N limit. These are precisely the vevs encoded in the asymptotics of the LLM solutions. We extract these vevs for operators up to dimension 4 using holographic renormalization and KK holography and show exact agreement with the field theory expressions.Comment: 67 pages, 6 figures; v2: typos corrected, refs added; v3: expanded explanations, more typos correcte

    Real-time gauge/gravity duality: Prescription, Renormalization and Examples

    Full text link
    We present a comprehensive analysis of the prescription we recently put forward for the computation of real-time correlation functions using gauge/gravity duality. The prescription is valid for any holographic supergravity background and it naturally maps initial and final data in the bulk to initial and final states or density matrices in the field theory. We show in detail how the technique of holographic renormalization can be applied in this setting and we provide numerous illustrative examples, including the computation of time-ordered, Wightman and retarded 2-point functions in Poincare and global coordinates, thermal correlators and higher-point functions.Comment: 85 pages, 13 figures; v2: added comments and reference

    Holographic anatomy of fuzzballs

    Get PDF
    We present a comprehensive analysis of 2-charge fuzzball solutions, that is, horizon-free non-singular solutions of IIB supergravity characterized by a curve on R^4. We propose a precise map that relates any given curve to a specific superposition of R ground states of the D1-D5 system. To test this proposal we compute the holographic 1-point functions associated with these solutions, namely the conserved charges and the vacuum expectation values of chiral primary operators of the boundary theory, and find perfect agreement within the approximations used. In particular, all kinematical constraints are satisfied and the proposal is compatible with dynamical constraints although detailed quantitative tests would require going beyond the leading supergravity approximation. We also discuss which geometries may be dual to a given R ground state. We present the general asymptotic form that such solutions must have and present exact solutions which have such asymptotics and therefore pass all kinematical constraints. Dynamical constraints would again require going beyond the leading supergravity approximation.Comment: 87 pages, begins with 10 page self contained summary of results;v2:JHEP version; v3: typos corrected, see in particular formula D.1
    • …
    corecore