107 research outputs found

    Pedestrian Risk Taking While Road Crossing: A Comparison of Observed and Declared Behaviour

    Get PDF
    AbstractThe objective of this research is the comparative analysis of observed and declared behaviour of pedestrians as regards road crossing in urban areas. A field survey was carried out, in which a panel of 75 young and middle-aged pedestrians (out of which 40 males) were asked to take 8 short walking trips (each one corresponding to a different walking and crossing scenario and involving one road crossing) in the Athens city centre in Greece. This allowed to record their crossing behaviour in different road and traffic conditions, including residential roads, main urban roads and major urban arterials. The same individuals were asked to fill in a questionnaire on their crossing behaviour and preferences at different road and traffic environments, as well as other related questions concerning their travel motivations, their mobility characteristics, their risk perceptions and preferences etc. A comparative analysis of their declared and observed crossing behaviour was carried out. More specifically, for each pedestrian, the rate of mid-block crossing and diagonal crossing during the walking tasks was calculated for the different road and traffic conditions. These were compared to their questionnaire responses on their crossing behaviour in different road and traffic conditions. The results suggest that, overall, pedestrians observed behaviour is in accordance with their declared behaviour. However, there is a non-negligible share of pedestrians, whose observed and declared behaviour were discordant, either at specific road and traffic conditions or overall. For instance, there were pedestrians who declared that they never cross at mid-block on major urban road but did so during the survey. Moreover, there were pedestrians who declared high frequency of mid-block crossing, but did not implement these crossing practices during the survey. The degree of discordance between pedestrian observed and declared behaviour was further analysed in relation to pedestrian demographics. A weak tendency was identified for female pedestrians to have more discordance between observed and declared crossing behaviour on residential roads, and the same was the case for young pedestrians in all road and traffic conditions. Overall, the results suggest that, while most pedestrians appear to have consistent declared and observed behaviour, there may all deviate from their general “profile” under specific conditions

    Modeling road accident injury under-reporting in Europe

    Get PDF
    In this research, a disaggregate analysis of road accident injury under-reporting in selected European countries is presented. The level of injury under-reporting is expressed by under-reporting coefficients, estimated as the actual estimated number of road accident injuries of a given severity to the number of related injuries recorded by the Police. These coefficients were calculated within national/regional studies in the examined countries, through a specially developed uniform methodology of linking and matching Police road accident records and hospital records. Log-rate models are developed in order to estimate the combined effects of country (CZ, FR, GR, HU, NL, ES and the UK), road user type (car occupant, motorcyclist, pedal cyclist, pedestrian), Police severity score (serious or slight injury) and MAIS score (the maximum Abbreviated Injury Scale score) on under-reporting. The results suggest that the examined characteristics have important combined effect on under-reporting (i.e. third-order interaction). The results of the analysis of lower-order interactions reveal specific particularities of each country/region, indicating areas on which authorities should focus their efforts. For example, it was found that slight injuries are more likely to be under-reported than serious injuries in the Czech Republic, France, and Greece, while the opposite is the case for the Netherlands and the UK. Moreover, although the Netherlands do not present high under-reporting rates overall, a particular issue is identified in this country for pedal cyclists’ slight injuries. Finally, a considerable part of total under-reporting in most countries can be attributed to injury severity mis-reporting. Document type: Articl

    Review and ranking of crash risk factors related to the road infrastructure

    Get PDF
    The objective of this paper is the review and comparative assessment of infrastructure related crash risk factors, with the explicit purpose of ranking them based on how detrimental they are towards road safety (i.e. crash risk, frequency and severity). This analysis was carried out within the SafetyCube project, which aimed to identify and quantify the effects of risk factors and measures related to behaviour, infrastructure or vehicles, and integrate the results in an innovative road safety Decision Support System (DSS). The evaluation was conducted by examining studies from the existing literature. These were selected and analysed using a specifically designed common methodology. Infrastructure risk factors were structured in a hierarchical taxonomy of 10 areas with several risk factors in each area (59 specific risk factors in total), examples include: alignment features (e.g. horizontal-vertical alignment deficiencies), cross-section characteristics (e.g. superelevation, lanes, median and shoulder deficiencies), road surface deficiencies, workzones, junction deficiencies (interchange and at-grade) etc. Consultation with infrastructure stakeholders (international organisations, road authorities, etc.) took place in dedicated workshops to identify user needs for the DSS, as well as “hot topics” of particular importance. The following analysis methodology was applied to each infrastructure risk factor: (i) A search for relevant international literature, (ii) Selection of studies on the basis of rigorous criteria, (iii) Analysis of studies in terms of design, methods and limitations, (iv) Synthesis of findings - and meta-analysis, when feasible. In total 243 recent and high quality studies were selected and analysed. Synthesis of results was made through 39 ‘Synopses’ (including 4 original meta-analyses) on individual risk factors or groups of risk factors. This allowed the ranking of infrastructure risk factors into three groups: risky (11 risk factors), probably risky (18 risk factors), and unclear (7 risk factors)

    Compilation of analyses of risks and measures, deliverable 8.2 of the H2020 project SafetyCube

    Get PDF
    This deliverable provides information on how the information on road safety risks and measures that has been collected within SafetyCube, is processed, stored and made available to users through the SafetyCube Decision Support System (DSS) [...continues]

    D9.1 Report on vehicle survey operator needs

    Get PDF
    In the era of digitization, technology developments have been making massive and detailed operator performance data easily available, thus upscaling transport technology into a new level of challenging conditions and drastically transforming the framework of operator-vehicle-environment interactions. Consequently, the need for increased understanding of the human factors – distraction, fatigue and drowsiness, health concerns, extreme emotions and sociocultural factors – affecting the behaviour of operators, and the harmonization of them with the current state of transport and data technology, create an opportunity to detect and design customised interventions to mitigate road risks, increase awareness and dynamically upgrade road operators’ performance.The project entitled ‘Safety tolerance zone calculation and interventions for drivervehicle-environment interactions under challenging conditions’ — ‘i-DREAMS’ aims to setup a framework for the definition, development, testing and validation of a context-aware ‘Safety Tolerance Zone’ for driving, within a smart Driver, Vehicle & Environment Assessment and Monitoring System (i-DREAMS). This framework should translate into new road safety interventions, improved driver well-being and transfer of control between human and vehicle, as well as a more eco-efficient driving style since safer driving implies an eco-friendlier behaviour.Taking into account, on the one hand, driver-related background factors (age, driving experience, safety attitudes and perceptions, etc.) and real-time risk-related physiological indicators (e.g. fatigue, distraction, stress, etc.), and on the other hand, driving task-related complexity indicators (e.g. time of day, speed, traffic intensity, presence of vulnerable road users, adverse weather, etc.) a continuous real-time assessment will be made to monitor and determine if a driver is within acceptable boundaries of safe operation (i.e. safety tolerance zone).Initial testing will take place in a driving simulator environment after which promising interventions will be tested and validated under real-world conditions in a testbed consisting of 600 drivers in total across 5 EU countries. Market roadmaps will be developed to support smooth transition of the investigated technologies to the market and experience from use cases in different European countries will be used to disseminate best practices.</div

    Developing the European road safety decision support system

    Get PDF
    The Decision Support System (DSS) is one of the key objectives of the European co-funded research project SafetyCube in order to better support evidence-based policy making. Results will be assembled in the form of a DSS that will present for each suggested road safety measure: details of risk factor tackled, measure, best estimate of casualty reduction effectiveness, cost-benefit evaluation and analytic background. The development of the DSS presents a great potential to further support decision making at local, regional, national and international level, aiming to fill in the current gap of comparable measures effectiveness evaluation. In order to provide policy-makers and industry with comprehensive and well-structured information about measures, it is essential that a systems approach is used to ensure the links between risk factors and all relevant safety measures are made fully visible. The DSS is intended to become a major source of information for industry, policy-makers and the wider road safety community

    The future decision support system, deliverable 8.5 of the H2020 project SafetyCube

    Get PDF
    The European Road Safety Decision Support System (DSS) is a comprehensive “one stop shop” designed to inform evidence based policy by providing state of the art scientific knowledge on road safety. A short promotion video is available here: www.youtube.com/watch?v=Y-mVUde3knU. The DSS (www.roadsafety-dss.eu) has a user friendly web-based interface allowing users access to compressive information about a large range of road safety risk (problems) and measures (solutions), and links between the two. In addition, users are presented with information about serious road injuries, accident scenario fact sheets and an Economic Efficiency Evaluation (E3) tool. The E3 tool allows users to evaluate the cost effectiveness of road safety measures as well as providing a selection of worked examples. The European Road Safety DSS was developed by the European Commission supported Horizon 2020 project Safety CaUsation, Benefits and Efficiency (SafetyCube). The object of SafetyCube was to develop an innovative road safety Decision Support System (DSS) that will enable policy-makers and stakeholders to select and implement the most appropriate strategies, measures and cost-effective approaches to reduce casualties of all road user types and all severities. Detailed information about the development and DSS status at the end of the SafetyCube project are available in Yannis & Papadimitriou (2018). An overview of the DSS scientific content and a summary of the methodology used to develop the DSS can be found in the SafetyCube Final Project Report (Thomas & Talbot, 2018). The present Deliverable (8.5) gives a brief overview of the current state of the art DSS, describes the future enhanced version of the DSS and provides information for potential funder(s). Opportunity is available for new funders to support the European road safety DSS as it is developed and enhanced for future users. Through supporting the DSS, the future funder(s) will be contributing the Global UN Sustainable Development Goals on road safety by taking a leading position to actively promote effective solutions to road safety’s most pressing challenges. Aspirations for the future DSS will make the scientific content more accessible through translation of content in to local languages and filtering information into the manner most appropriate for low and middle income countries. The content will be expanded to include more topics and more detail about existing topics. Expansion of knowledge will include knowledge about implementing measures and a focus on the interdependences of road safety measures considering the impacts of implementing measures in combination. In addition to the future visions for content there are also aspirations for the future web based interface. A key enhancement will be to give users the ability to customise the display and select the information they would like to see for each individual coded study. The best case future for DSS operation is that of extended growth supported by considerable external funding. The exact structure, legal entity and governance of the future enhanced DSS will be decided in collaboration between the SafetyCube consortia and the future funder(s). In this cooperative way funding partners will have the chance to influence the development process in the manner most appropriate to meet their stakeholder needs. It is envisaged that the future DSS will be financed by several Organisations, therefore, the governance, time schedule and strategy for extended growth will be mutually decided. Within the SafetyCube project activities have been undertaken to advertise the DSS and provide information for potential funders. The European road safety DSS is the first integrated road safety support system developed in Europe. It aims to be the “go to tool”for road safety knowledge. The next funder(s) of the DSS have the exciting opportunity to take the DSS to the next level in facilitating the future of evidence based road safety policy making, ensuring safe roads for all

    A systematic cost-benefit analysis of 29 road safety measures

    Get PDF
    Economic evaluations of road safety measures are only rarely published in the scholarly literature. We collected and (re-)analyzed evidence in order to conduct cost-benefit analyses (CBAs) for 29 road safety measures. The information on crash costs was based on data from a survey in European countries. We applied a systematic procedure including corrections for inflation and Purchasing Power Parity in order to express all the monetary information in the same units (EUR, 2015). Cost-benefit analyses were done for measures with favorable estimated effects on road safety and for which relevant information on costs could be found. Results were assessed in terms of benefit-to-cost ratios and net present value. In order to account for some uncertainties, we carried out sensitivity analyses based on varying assumptions for costs of measures and measure effectiveness. Moreover we defined some combinations used as best case and worst case scenarios. In the best estimate scenario, 25 measures turn out to be cost-effective. 4 measures (road lighting, automatic barriers installation, area wide traffic calming and mandatory eyesight tests) are not cost-effective according to this scenario. In total, 14 measures remain cost-effective throughout all scenarios, whereas 10 other measures switch from cost-effective in the best case scenario to not cost-effective in the worst case scenario. For three measures insufficient information is available to calculate all scenarios. Two measures (automatic barriers installation and area wide traffic calming) even in the best case do not become cost-effective. Inherent uncertainties tend to be present in the underlying data on costs of measures, effects and target groups. Results of CBAs are not necessarily generally valid or directly transferable to other settings.acceptedVersio
    • 

    corecore