469 research outputs found

    Venice and the Touristic Imagery. On the Utility not to part Big and Small Ordinary Events

    Get PDF
    The discourse about tourism and urban structures deals with real, imaginary and symbolic themes. Starting from the images of the aristocratic holidays, and of the travel like a knowledge adventure, I focus on Venice as a study-case: 10 millions tourists per year (85% from foreign countries) face 60.000 inhabitants living in the central islands. The Lido of Venice has an autonomous feature inside the urbanization, with an image related to the Belle Epoque. The transformation of the city parts seems now to pass through the relations among different fields. The first one are the cultural activities, like the most vitalizing factor. The second one is the demand for environmental quality, that is getting higher. The third one is the residential function, that comes together with the reduction of the welfare state. The fourth field are the local economical activities,while unemployment is getting higher in Italy (40% jobless young people). The tourists will go to Venice with an unlimited, vague and mediatic idea of its essence. The citizens and their rapresentances should better think at Venice like a great but limited resource, that cannot be preserved if its citizens don.t increase it through ordinary actions, within a coherent public vision

    Characterization of a defective PbWO4 crystal cut along the a-c crystallographic plane: structural assessment and a novel photoelastic stress analysis

    Full text link
    Among scintillators, the PWO is one of the most widely used, for instance in CMS calorimeter at CERN and PANDA project. Crystallographic structure and chemical composition as well as residual stress condition, are indicators of homogeneity and good quality of the crystal. In this paper, structural characterization of a defective PbWO4 (PWO) crystal has been performed by X-ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Photoelasticity in the unusual a-c crystallographic plane. XRD and EDS analysis have been used to investigate crystallographic orientation and chemical composition, while stress distribution, which indicates macroscopic inhomogeneities and defects, has been obtained by photoelastic approaches, in Conoscopic and Sphenoscopic configuration. Since the sample is cut along the a-c crystallographic plane, a new method is proposed for the interpretation of the fringe pattern. The structural analysis has detected odds from the nominal lattice dimension, which can be attributed to the strong presence of Pb and W. A strong inhomogeneity over the crystal sample has been revealed by the photoelastic inspection. The results give reliability to the proposed procedure which is exploitable in crystals with other structures.Comment: 18 pages, 10 figures, revised versio

    A novel bacterial l-arginine sensor controlling c-di-GMP levels in Pseudomonas aeruginosa

    Get PDF
    Nutrients such as amino acids play key roles in shaping the metabolism of microorganisms in natural environments and in host–pathogen interactions. Beyond taking part to cellular metabolism and to protein synthesis, amino acids are also signaling molecules able to influence group behavior in microorganisms, such as biofilm formation. This lifestyle switch involves complex metabolic reprogramming controlled by local variation of the second messenger 3′, 5′-cyclic diguanylic acid (c-di-GMP). The intracellular levels of this dinucleotide are finely tuned by the opposite activity of dedicated diguanylate cyclases (GGDEF signature) and phosphodiesterases (EAL and HD-GYP signatures), which are usually allosterically controlled by a plethora of environmental and metabolic clues. Among the genes putatively involved in controlling c-di-GMP levels in P. aeruginosa, we found that the multidomain transmembrane protein PA0575, bearing the tandem signature GGDEF-EAL, is an l-arginine sensor able to hydrolyse c-di-GMP. Here, we investigate the basis of arginine recognition by integrating bioinformatics, molecular biophysics and microbiology. Although the role of nutrients such as l-arginine in controlling the cellular fate in P. aeruginosa (including biofilm, pathogenicity and virulence) is already well established, we identified the first l-arginine sensor able to link environment sensing, c-di-GMP signaling and biofilm formation in this bacterium

    Biophysical characterization of melanoma cell phenotype markers during metastatic progression

    Get PDF
    Melanoma is the most fatal form of skin cancer, with increasing prevalence worldwide. The most common melanoma genetic driver is mutation of the proto-oncogene serine/threonine kinase BRAF; thus, the inhibition of its MAP kinase pathway by specific inhibitors is a commonly applied therapy. However, many patients are resistant, or develop resistance to this type of monotherapy, and therefore combined therapies which target other signaling pathways through various molecular mechanisms are required. A possible strategy may involve targeting cellular energy metabolism, which has been recognized as crucial for cancer development and progression and which connects through glycolysis to cell surface glycan biosynthetic pathways. Protein glycosylation is a hallmark of more than 50% of the human proteome and it has been recognized that altered glycosylation occurs during the metastatic progression of melanoma cells which, in turn facilitates their migration. This review provides a description of recent advances in the search for factors able to remodel cell metabolism between glycolysis and oxidative phosphorylation, and of changes in specific markers and in the biophysical properties of cells during melanoma development from a nevus to metastasis. This development is accompanied by changes in the expression of surface glycans, with corresponding changes in ligand-receptor affinity, giving rise to structural features and viscoelastic parameters particularly well suited to study by label-free biophysical methods

    Caval-Aortic Access to Allow Transcatheter Aortic Valve Replacement in Otherwise Ineligible Patients Initial Human Experience

    Get PDF
    ObjectivesThis study describes the first use of caval-aortic access and closure to enable transcatheter aortic valve replacement (TAVR) in patients who lacked other access options. Caval-aortic access refers to percutaneous entry into the abdominal aorta from the femoral vein through the adjoining inferior vena cava.BackgroundTAVR is attractive in high-risk or inoperable patients with severe aortic stenosis. Available transcatheter valves require large introducer sheaths, which are a risk for major vascular complications or preclude TAVR altogether. Caval-aortic access has been successful in animals.MethodsWe performed a single-center retrospective review of procedural and 30-day outcomes of prohibitive-risk patients who underwent TAVR via caval-aortic access.ResultsBetween July 2013 and January 2014, 19 patients underwent TAVR via caval-aortic access; 79% were women. Caval-aortic access and tract closure were successful in all 19 patients; TAVR was successful in 17 patients. Six patients experienced modified VARC-2 major vascular complications, 2 (11%) of whom required intervention. Most (79%) required blood transfusion. There were no deaths attributable to caval-aortic access. Throughout the 111 (range 39 to 229) days of follow up, there were no post-discharge complications related to tract creation or closure. All patients had persistent aorto-caval flow immediately post-procedure. Of the 16 patients who underwent repeat imaging after the first week, 15 (94%) had complete closure of the residual aorto-caval tract.ConclusionsPercutaneous transcaval venous access to the aorta allows TAVR in otherwise ineligible patients, and may offer a new access strategy for other applications requiring large transcatheter implants

    Studying ggdef domain in the act: Minimize conformational frustration to prevent artefacts

    Get PDF
    GGDEF-containing proteins respond to different environmental cues to finely modulate cyclic diguanylate (c-di-GMP) levels in time and space, making the allosteric control a distinctive trait of the corresponding proteins. The diguanylate cyclase mechanism is emblematic of this control: two GGDEF domains, each binding one GTP molecule, must dimerize to enter catalysis and yield c-di-GMP. The need for dimerization makes the GGDEF domain an ideal conformational switch in multidomain proteins. A re-evaluation of the kinetic profile of previously characterized GGDEF domains indicated that they are also able to convert GTP to GMP: this unexpected reactivity occurs when conformational issues hamper the cyclase activity. These results create new questions regarding the characterization and engineering of these proteins for in solution or structural studies

    Targeting the Interaction between the SH3 Domain of Grb2 and Gab2

    Get PDF
    Gab2 is a scaffolding protein, overexpressed in many types of cancers, that plays a key role in the formation of signaling complexes involved in cellular proliferation, migration, and differentiation. The interaction between Gab2 and the C-terminal SH3 domain of the protein Grb2 is crucial for the activation of the proliferation-signaling pathway Ras/Erk, thus representing a potential pharmacological target. In this study, we identified, by virtual screening, seven potential inhibitor molecules that were experimentally tested through kinetic and equilibrium binding experiments. One compound showed a remarkable effect in lowering the affinity of the C-SH3 domain for Gab2. This inhibitory effect was subsequently validated in cellula by using lung cancer cell lines A549 and H1299. Our results are discussed under the light of previous works on the C-SH3:Gab2 interaction

    Mammary Paget's disease occurring after mastectomy

    Get PDF
    BACKGROUND: Mammary Paget's disease and extramammary Paget's disease are neoplastic conditions, in which there is intraepithelial (usually intraepidermal) infiltration by neoplastic cells showing glandular differentiation. Mammary Paget's disease occurs exclusively on the nipple/areola complex from where it may spread to the surrounding skin. CASE PRESENTATION: We here describe a case of Paget's disease occurring on the thoracic wall site of a previous simple mastectomy, and also briefly summarise the most important aspects leading to a diagnosis of mammary Paget's disease. CONCLUSION: To the best of our knowledge, this is the first reported case of mammary Paget's disease occurring after mastectomy. The absence of the nipple/areola complex obviously raised some questions concerning whether it was mammary or extra-mammary Paget's disease, and how it could occur in the absence of the nipple/areola complex
    • …
    corecore