3,088 research outputs found

    Pinning of the domain walls of the cluster spin-glass phase in LTT La_{2-x}Ba_xCuO_4

    Full text link
    We compare the low frequency (~1 kHz) anelastic spectra of La_{2-x}Sr_xCuO_4 and La_{2-x}Ba_xCuO_4 at x = 0.03 and 0.06 in the temperature region where the freezing into the cluster spin-glass (CSG) phase occurs and is accompanied by an increase of the acoustic absorption. The dependence of the amplitude of the anelastic relaxation on doping is explained in terms of movement of the domain walls (DW) in the CSG phase between the Sr (Ba) pinning points. The LBCO sample at x = 0.06 transforms into the LTT structure below 40 K and the amplitude of the anelastic anomaly is 7 times smaller than expected, indicating pinning of the DW which run parallel to the LTT modulation. Such DW can be identified with the stripes of high hole density, and the present measurements show that they are mobile between the Sr (Ba) pinning points down to few kelvin, but become static in the presence of LTT modulation also far from the condition x = 1/8 for commensurability between stripe and lattice periodicities.Comment: 4 figure

    Anelastic relaxation process of polaronic origin in La{2-x}Sr{x}CuO{4}: interaction between the charge stripes and pinning centers

    Full text link
    The evolution of an anelastic relaxation process occurring around 80 K in La{2-x}Sr{x}CuO{4} at a measuring frequency of ~1 kHz has been followed from x = 0.0075 to the overdoped region, x = 0.2, where it disappears. The dependence of the peak intensity on doping is consistent with a polaronic mechanism, identified with the disordered charge stripes overcoming pinning centers. A marked decrease of the peak amplitude occurs at x > 0.045, the same doping range where a change of the stripe order from parallel to diagonal with respect to the Cu-O bonds has been observed by neutron diffraction. Both the energy barrier and peak amplitude also exhibit a rise near x = 1/8.Comment: 5 pages, 4 figure

    Perturbation damage indicators based on complex modes

    Get PDF
    The papers focusing on dynamic identification of structural damages usually rely on the comparison of two or more responses of the structure; the measure of damage is related to the differences of the vibration signals. Almost all literature methods assume damping proportionality to mass and stiffness; however, this is acceptable for new, undamaged structures, but not for existing, potentially damaged structures, especially when localised damages occur. It is well-known that in non-proportionally damped systems the modes are no longer the same of the undamped system: thus, some authors proposed to use modal complexity as a damage indicator. This contribution presents a perturbation approach that can easily reveal such a modal complexity

    Observation of an incoherent thermally activated proton hopping process in calix-[4]-arene by means of anelastic spectroscopy

    Full text link
    The anelastic spectrum of calix[4]arene was measured at two different vibrational frequencies. Three thermally activated peaks were detected. The lowest temperature peak can be described considering a continous distribution function of activation energies for the relaxation. This anelastic peak can be ascribed to a thermally activated hopping process of H atoms of the OH groups, corresponding to a flip-flop of the OH bond. From the results of the present study, it seems that anelastic spectroscopy is a good experimental technique to study atomic motion inside molecules at a mesoscopic (few molecules) level.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Hydrogen absorption properties of amorphous (Ni0.6Nb0.4−yTay)100−xZrx membranes

    Get PDF
    Ni based amorphous materials have great potential as hydrogen purification membranes. In the present work the melt spun (Ni0.6Nb0.4−yTay)100−xZrx with y=0, 0.1 and x=20, 30 was studied. The result of X-ray diffraction spectra of the ribbons showed an amorphous nature of the alloys. Heating these ribbons below T < 400 °C, even in a hydrogen atmosphere (1−10 bar), the amorphous structure was retained. The crystallization process was characterized by differential thermal analysis and the activation energy of such process was obtained. The hydrogen absorption properties of the samples in their amorphous state were studied by the volumetric method, and the results showed that the addition of Ta did not significantly influence the absorption properties, a clear change of the hydrogen solubility was observed with the variation of the Zr content. The values of the hydrogenation enthalpy changed from ~37 kJ/mol for x=30 to ~9 kJ/mol for x=20. The analysis of the volumetric data provides the indications about the hydrogen occupation sites during hydrogenation, suggesting that at the beginning of the absorption process the deepest energy levels are occupied, while only shallower energy levels are available at higher hydrogen content, with the available interstitial sites forming a continuum of energy levels

    Observation of the cluster spin-glass phase in La_{2-x}Sr_{x}CuO_{4} by anelastic spectroscopy

    Full text link
    An increase of the acoustic absorption is found in La_{2-x}Sr_{x}CuO_{4} (x = 0.019, 0.03 and 0.06) close to the temperatures at which freezing of the spin fluctuations in antiferromagnetic-correlated clusters is expected to occur. The acoustic absorption is attributed to changes of the sizes of the quasi-frozen clusters induced by the vibration stress through magnetoelastic coupling.Comment: LaTeX, 2 PostScript figures, submitted to Phys. Rev.

    Phonon-Metamorphosis in Ferromagnetic Manganite Films: Probing the Evolution of an Inhomogeneous State

    Get PDF
    The analysis of phonon anomalies provides valuable information about the cooperative dynamics of lattice, spin and charge degrees of freedom. Significant is the anomalous temperature dependence of the external modes observed in La2/3_{2/3}Sr1/3_{1/3}MnO3_{3} (LSMO) films. The two external modes merge close to the ferromagnetic to paramagnetic transition at TCT_C and, moreover, two new modes evolve in this temperature range with strong resonances at slightly higher frequencies. We propose that this observed phonon metamorphosis probes the inhomogeneous Jahn-Teller distortion, manifest on the temperature scale TCT_C. The analysis is based on the first observation of all eight phonon modes in the metallic phase of LSMO and on susceptibility measurements which identify a Griffiths-like phase.Comment: 4 pages, 4 figure

    Infrared absorption from Charge Density Waves in magnetic manganites

    Full text link
    The infrared absorption of charge density waves coupled to a magnetic background is first observed in two manganites La{1-x}Ca{x}MnO{3} with x = 0.5 and x = 0.67. In both cases a BCS-like gap 2 Delta (T), which for x=0.5 follows the hysteretic ferro-antiferromagnetic transition, fully opens at a finite T{0} < T{Neel}, with 2 Delta(T{0})/kT{c} close to 5. These results may also explain the unusual coexistence of charge ordering and ferromagnetism in La{0.5}Ca{0.5}MnO{3}.Comment: File revtex + 3 figs. in epsf. To appear on Phys. Rev. Let

    Cluster Spin Glass Distribution Functions in La2x_{2-x}Srx_xCuO4_4

    Full text link
    Signatures of the cluster spin glass have been found in a variety of experiments, with an effective onset temperature TonT_{on} that is frequency dependent. We reanalyze the experimental results and find that they are characterized by a distribution of activation energies, with a nonzero glass transition temperature Tg(x)<TonT_g(x)<T_{on}. While the distribution of activation energies is the same, the distribution of weights depends on the process. Remarkably, the weights are essentially doping independent.Comment: 5 pages, 5 ps figure
    corecore