224 research outputs found
stem cell senescence in diabetes forgetting the sweet old memories
Diabetes 2014;63:1841–1843 | DOI: 10.2337/db14-0275 Diabetic cardiomyopathy is identified by a left ventricular dysfunction due to metabolic and cellular abnormalities in the absence of atherosclerosis or hypertension and is one of the leading causes of morbidity and mortality in the diabetic population (1). It is characterized by myocardial necrosis and fibrosis, endothelial dysfunction, and stem cell senescence (2). This latter phenomenon is now considered to be a central mechanism of aging and agerelated pathologies as it has been associated with the reduced ability of tissues to replace lost cells and to repair damage (3,4). In this issue, Vecellio et al. (5) analyzed the intriguing issue of whether stem cells isolated from diabetic hearts have a metabolic memory reminiscen
Pericytes and cardiac stem cells: common features and peculiarities:Common features and peculiarities
Clinical data and basic research indicate that the structural and functional alterations that characterize the evolution of cardiac disease towards heart failure may be, at least in part, reversed. This paradigm shift is due to the accumulation of evidence indicating that, in peculiar settings, cardiomyocytes may be replenished. Moving from the consideration that cardiomyocytes are rapidly withdrawn from the cell cycle after birth, independent laboratories have tested the hypothesis that cardiac resident stem/progenitor cells resided in mammalian hearts and were important for myocardial repair. After almost two decades of intensive investigation, several (but partially overlapping) cardiac resident stem/progenitor cell populations have been identified. These primitive cells are characterized by mesenchymal features, unique properties that distinguish them from mesodermal progenitors residing in other tissues, and heterogeneous embryological origins (that include the neural crest and the epicardium). A further layer of complexity is related to the nature, in vivo localization and properties of mesodermal progenitors residing in adult tissues. Intriguingly, these latter, whose possible perivascular pericyte/mural cell origin has been shown, have been identified in human hearts too. However, their exact anatomical localization, pathophysiological role, and their relationship with cardiac stem/progenitor cells are emerging only recently. Therefore, aim of this review is to discuss the different origin, the distinct nature, and the complementary effect of cardiac stem cells and pericytes supporting regenerative strategies based on the combined use of both myogenic and angiogenic factors
A human neuronal model of Niemann Pick C disease developed from stem cells isolated from patient's skin.
Niemann Pick C (NPC) disease is a neurovisceral lysosomal storage disorder due to mutations in NPC1 or NPC2 genes, characterized by the accumulation of endocytosed unesterified cholesterol, gangliosides and other lipids within the lysosomes/late endosomes. Even if the neurodegeneration is the main feature of the disease, the analysis of the molecular pathways linking the lipid accumulation and cellular damage in the brain has been challenging due to the limited availability of human neuronal models.The aim of this study was to develop a human neuronal model of NPC disease by inducing neuronal differentiation of multipotent adult stem cells (MASC) isolated from NPC patients.Stem cells were isolated from 3 NPC patients and 3 controls both from skin biopsies and previously established skin fibroblast cultures. Cells were induced to differentiate along a neuronal fate adapting methods previously described by Beltrami et al, 2007. The surface immunophenotype of stem cells was analyzed by FACS. Stem cell and neuronal markers expression were evaluated by immunofluorescence. Intracellular accumulation of cholesterol and gangliosides were assessed by filipin staining and immunofluorescence, respectively. A morphometric analysis was performed using a Neurite outgrowth image program.After 3 passages in selective medium, MASC isolated either from skin biopsies or previously established skin fibroblast cultures displayed an antigenic pattern characteristic of mesenchymal stem cells and expressed the stem cell markers Oct-4, Nanog, Sox-2 and nestin. A massive lysosomal accumulation of cholesterol was observed only in cells isolated from NPC patients. After the induction of neural differentiation, remarkable morphologic changes were observed and cells became positive to markers of the neuronal lineage NeuN and MAP2. Differentiated cells from NPC patients displayed characteristic features of NPC disease, they showed intracellular accumulation of unesterified cholesterol and GM2 ganglioside and presented morphological differences with respect to cells derived from healthy donors.In conclusion, we generated a human neuronal model of NPC disease through the induction of differentiation of stem cells obtained from patient's easily accessible sources. The strategy described here may be applied to easily generate human neuronal models of other neurodegenerative diseases
Cardiac Cell Senescence and Redox Signaling
Aging is characterized by a progressive loss of the ability of the organism to cope with stressors and to repair tissue damage. As a result, chronic diseases, including cardiovascular disease, increase their prevalence with aging, underlining the existence of common mechanisms that lead to frailty and age-related diseases. In this frame, the progressive decline of the homeostatic and reparative function of primitive cells has been hypothesized to play a major role in the evolution of cardiac pathology to heart failure. Although initially it was believed that reactive oxygen species (ROS) were produced in an unregulated manner as a byproduct of cellular metabolism, causing macromolecular damage and aging, accumulating evidence indicate the major role played by redox signaling in physiology. Aim of this review is to critically revise evidence linking ROS to cell senescence and aging and to provide evidence of the primary role played by redox signaling, with a particular emphasis on the multifunctional protein APE1/Ref in stem cell biology. Finally, we will discuss evidence supporting the role of redox signaling in cardiovascular cells
Cardiac stem cell aging and heart failure
A side effect of the medical improvements of the last centuries is the progressive aging of the world population, which is estimated to reach the impressive number of 2 billion people with more than 65 years by 2050. As a consequence, age-related diseases, such as heart failure, will affect more and more patients in the next years. To understand the biological bases of these diseases will be a crucial task in order to find better treatments, and possibly slow age-related morbidity and mortality. Cardiac stem cells have been at the center of a heated debate and their potential involvement in cardiac homeostasis has been questioned. In this review, we summarize evidence obtained by independent groups, on different animal models and humans, that strongly support the important role played by immature, cardiac resident cells in the cardioprotection against heart failure
Role of microenvironment in glioma invasion: What we learned from in vitro models
The invasion properties of glioblastoma hamper a radical surgery and are responsible for its recurrence. Understanding the invasion mechanisms is thus critical to devise new therapeutic strategies. Therefore, the creation of in vitro models that enable these mechanisms to be studied represents a crucial step. Since in vitro models represent an over-simplification of the in vivo system, in these years it has been attempted to increase the level of complexity of in vitro assays to create models that could better mimic the behaviour of the cells in vivo. These levels of complexity involved: 1. The dimension of the system, moving from two-dimensional to three-dimensional models; 2. The use of microfluidic systems; 3. The use of mixed cultures of tumour cells and cells of the tumour micro-environment in order to mimic the complex cross-talk between tumour cells and their micro-environment; 4. And the source of cells used in an attempt to move from commercial lines to patient-based models. In this review, we will summarize the evidence obtained exploring these different levels of complexity and highlighting advantages and limitations of each system used
Investigation of adhesion and mechanical properties of human glioma cells by single cell force spectroscopy and atomic force microscopy.
Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics
U-shaped relationship between vitamin D levels and long-term outcome in large cohort of survivors of acute myocardial infarction
Background: Previous studies in the setting of patients with acute myocardial infarction (AMI) have demonstrated that hypovitaminosis D is associated with increased mortality risk during a follow-up whose median did not
exceed two years.
Objective: To evaluate the impact of vitamin D levels on long-term mortality in patients with AMI.
Results: In our study 477 patients with AMI were included. During a median follow-up period of 57 (IQR 53\u201364) months, 93 patients (20%) died. A non-linear U-shaped relationship between 25(OH)D levels and long-term
mortality was observed; patients with vitamin D b 10 ng/mL and N30 ng/mL had higher mortality rate than those with intermediate values. After adjustment for differences in baseline features and treatment, it was con-
firmed that extreme values of vitamin D (b10 or N30 ng/mL) are independent predictors of mortality with HR of 3.02 (95% CI 1.78\u20135.11). Other independent predictors of outcome were age, NYHA class at discharge, treatment
with ACE inhibitors and statins. The estimated time-dependent ROC curve of the multivariable model including
vitamin D showed an AUC significantly higher than the model without vitamin D: AUC 0.82 (95% CI 0.76\u20130.87) vs. 0.77 (95% CI 0.71\u20130.83), p = 0.005. Addition of vitamin D to the model that included all significant factors for
mortality improved the prognostic accuracy as showed by the metrics of reclassification (NRI 0.34 (95% CI 0.14\u20130.48), p = 0.003 and IDI 0.06 (95% CI 0.01\u20130.12, p = 0.005 p = 0.03).
Conclusions: We report a U-shaped relationship between vitamin D levels and long-term outcome of patients
surviving AMI
Adipose Derived Stem Cells for Corneal Wound Healing after Laser Induced Corneal Lesions in Mice
The aim of our study was to assess the clinical effectiveness of topical adipose derived stem cell (ADSC) treatment in laser induced corneal wounds in mice by comparing epithelial repair, inflammation, and histological analysis between treatment arms. Corneal lesions were performed on both eyes of 40 mice by laser induced photorefractive keratectomy. All eyes were treated with topical azythromycin bid for three days. Mice were divided in three treatment groups (n= 20), which included: control, stem cells and basic serum; which received topical treatment three times daily for five consecutive days. Biomicroscope assessments and digital imaging were performed by two masked graders at 30, 54, 78, 100, and 172 h to analyze extent of fluorescein positive epithelial defect, corneal inflammation, etc. Immunohistochemical techniques were used in fixed eyes to assess corneal repair markers Ki67, \u3b1 Smooth Muscle Actin (\u3b1-SMA) and E-Cadherin. The fluorescein positive corneal lesion areas were significantly smaller in the stem cells group on days 1 (p< 0.05), 2 (p< 0.02) and 3. The stem cell treated group had slightly better and faster re-epithelization than the serum treated group in the initial phases. Comparative histological data showed signs of earlier and better corneal repair in epithelium and stromal layers in stem cell treated eyes, which showed more epithelial layers and enhanced wound healing performance of Ki67, E-Cadherin, and \u3b1-SMA. Our study shows the potential clinical and histological advantages in the topical ADSC treatment for corneal lesions in mice
- …