17 research outputs found

    The Non-Invasive Assessment of Circulating D-Loop and mt-ccf Levels Opens an Intriguing Spyhole into Novel Approaches for the Tricky Diagnosis of NASH

    No full text
    Nonalcoholic fatty liver disease (NAFLD) is the commonest liver disease worldwide affecting both adults and children. Nowadays, no therapeutic strategies have been approved for NAFLD management, and hepatic biopsy remains the gold standard procedure for its diagnosis. NAFLD is a multifactorial disease whose pathogenesis is affected by environmental and genetic factors, and it covers a spectrum of conditions ranging from simple steatosis up to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Several studies underlined the urgent need to develop an NAFLD risk prediction model based on genetics, biochemical indicators, and metabolic disorders. The loss of mitochondrial dynamics represents a typical feature of progressive NAFLD. The imbalance of mitochondrial lifecycle together with the impairment of mitochondrial biomass and function trigger oxidative stress, which in turn damages mitochondrial DNA (mtDNA). We recently demonstrated that the main genetic predictors of NAFLD led to mitochondrial dysfunction. Moreover, emerging evidence shows that variations in the displacement loop (D-loop) region impair mtDNA replication, and they have been associated with advanced NAFLD. Finally, lower levels of mitophagy foster the overload of damaged mitochondria, resulting in the release of cell-free circulating mitochondrial DNA (mt-ccf) that exacerbates liver injury. Thus, in this review we summarized what is known about D-loop region alterations and mt-ccf content during NAFLD to propose them as novel non-invasive biomarkers

    The Non-Invasive Assessment of Circulating D-Loop and mt-ccf Levels Opens an Intriguing Spyhole into Novel Approaches for the Tricky Diagnosis of NASH

    No full text
    Nonalcoholic fatty liver disease (NAFLD) is the commonest liver disease worldwide affecting both adults and children. Nowadays, no therapeutic strategies have been approved for NAFLD management, and hepatic biopsy remains the gold standard procedure for its diagnosis. NAFLD is a multifactorial disease whose pathogenesis is affected by environmental and genetic factors, and it covers a spectrum of conditions ranging from simple steatosis up to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Several studies underlined the urgent need to develop an NAFLD risk prediction model based on genetics, biochemical indicators, and metabolic disorders. The loss of mitochondrial dynamics represents a typical feature of progressive NAFLD. The imbalance of mitochondrial lifecycle together with the impairment of mitochondrial biomass and function trigger oxidative stress, which in turn damages mitochondrial DNA (mtDNA). We recently demonstrated that the main genetic predictors of NAFLD led to mitochondrial dysfunction. Moreover, emerging evidence shows that variations in the displacement loop (D-loop) region impair mtDNA replication, and they have been associated with advanced NAFLD. Finally, lower levels of mitophagy foster the overload of damaged mitochondria, resulting in the release of cell-free circulating mitochondrial DNA (mt-ccf) that exacerbates liver injury. Thus, in this review we summarized what is known about D-loop region alterations and mt-ccf content during NAFLD to propose them as novel non-invasive biomarkers

    Effects of induced water deficit and biofertilization on growth dynamics and bulb yield of onion (Allium cepa L.) in a neotropical semi-arid environment

    No full text
    In a scenario of world population increase and climate change, an efficient use of water is key for agricultural production. Onion is one of the most profitable crops and can adapt to particular conditions of water stress. The objective of this research was to determine growing degree-days (GDD) and accumulated radiation under non-stress conditions, and yield of an F1 2000 hybrid of onion (Allium cepa L.) under water deficit and biofertilization in a semi-arid environment. An established nutrient requirement of 247 kg N, 240 kg P2O5 (105 kg P), 240 kg K2O (199 kg K) and two irrigation factors were applied: normal irrigation (NI) with a daily and water deficit (WD) with a three-day interval irrigation frequencies. The effect of biofertilization was evaluated through the inoculation of a microbial consortium in combination with four NPK fertilizer treatments. The crop accumulated 1334 Cd and 1188 MJ mThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Old-fashioned and newly discovered biomarkers: the future of NAFLD-related HCC screening and monitoring

    No full text
    Nonalcoholic fatty liver disease (NAFLD) is the major contributor to the global burden of chronic liver diseases and ranges from simple and reversible steatosis to nonalcoholic steatohepatitis (NASH), which may progress into cirrhosis and hepatocellular carcinoma (HCC). HCC represents the most common liver cancer, and it is a leading cause of death worldwide with an increasing trend for the future. Due to late diagnosis, non-responsiveness to systemic therapy, and high cancer heterogeneity, the treatment of this malignancy is challenging. To date, liver biopsy and ultrasound (US) are the gold standard procedures for HCC diagnosis and surveillance, although they are not suitable for mass screening. Therefore, it is impelling to find new, less invasive diagnostic strategies able to detect HCC at an early stage as well as monitor tumor progression and recurrence. Common and rare inherited variations that boost the switching from NASH to liver cancer may help to predict tumor onset. Furthermore, epigenetic changes which reflect intertumoral heterogeneity occur early in tumorigenesis and are highly stable under pathologic conditions. The severity of hepatic injuries can be detected through the analysis of cell circulating tumor DNAs (ctDNAs), microRNAs (miRNAs), and noncoding RNAs (ncRNAs), which are involved in several pathological processes that feature cancer, including cell growth, survival, and differentiation, thus representing appealing biomarkers for HCC. Therefore, this review discusses the current options for HCC surveillance, focusing on the role of genetic and epigenetic biomarkers as new strategies to refine HCC management

    Recreating gut-liver axis during NAFLD onset by using a Caco-2/HepG2 co-culture system

    No full text
    Nonalcoholic fatty liver disease (NAFLD) onset and its progression towards nonalcoholic steatohepatitis (NASH) features increased intestinal permeability and leaky gut, thereby favoring the escape of endotoxin [lipopolysaccharides (LPS)] from the gut to the liver. The aim of this study was to resemble the crosstalk between intestine and liver during NAFLD by using an in vitro model of co-culture system. Enterocytes (Caco-2) were seeded on Transwell filters (pore size: 0.4 μm) and cultured for 21 days to constitute a confluent monolayer, and then they were co-cultivated with hepatocytes (HepG2) for an additional 24 h. Caco-2 on the apical chamber were exposed to LPS and/or a mixture of palmitic and oleic acid (PAOA) for 24 h. FITC-4000 dextrans (FD4) permeability across Caco-2 monolayer was increased by the treatment of Caco-2 cells with PAOA and LPS, consistently with tight junction-associated proteins reduction. Caco-2 exposure to PAOA/LPS promoted ApoB, triglyceride (TG), and free fatty acid secretion in basolateral media. In turn, HepG2 co-cultured with Caco-2 exposed to LPS, PAOA, or both accumulated lipid droplets and increased intracellular TG content. Likewise, Caco-2 released pro-inflammatory cytokines in basolateral media. These events triggered endoplasmic reticulum (ER) and oxidative stress, enhancing reactive oxygen species (ROS), H2O2, aldehyde derivate production, and ROS-induced DNA damage in HepG2 cells. Hence, Caco-2/HepG2 co-culture system may faithfully reproduce the breach in the intestinal barrier integrity that occurs in NAFLD, thus resulting in the increased inflammatory response and ER and oxidative and stress, which promote the switch towards NASH

    α-Lipoic Acid Improves Hepatic Metabolic Dysfunctions in Acute Intermittent Porphyria: A Proof-of-Concept Study

    No full text
    Background: Acute intermittent porphyria (AIP) is caused by the haploinsufficiency of porphobilinogen deaminase (PBGD) enzymatic activity. Acute attacks occur in response to fasting, and alterations in glucose metabolism, insulin resistance, and mitochondrial turnover may be involved in AIP pathophysiology. Therefore, we investigated the metabolic pathways in PBGD-silenced hepatocytes and assessed the efficacy of an insulin mimic, α-lipoic acid (α-LA), as a potential therapeutic strategy. Methods: HepG2 cells were transfected with siRNA-targeting PBGD (siPBGD). Cells were cultured with low glucose concentration to mimic fasting and exposed to α-LA alone or with glucose. Results: At baseline, siPBGD cells showed a lower expression of genes involved in glycolysis and mitochondrial dynamics along with reduced total ATP levels. Fasting further unbalanced glycolysis by inducing ATP shortage in siPBGD cells and activated DRP1, which mediates mitochondrial separation. Consistently, siPBGD cells in the fasted state showed the lowest protein levels of Complex IV, which belongs to the oxidative phosphorylation (OXPHOS) machinery. α-LA upregulated glycolysis and prompted ATP synthesis and triglyceride secretion, thus possibly providing energy fuels to siPBGD cells by improving glucose utilization. Finally, siPBGD exposed to α-LA plus glucose raised mitochondrial dynamics, OXPHOS activity, and energy production. Conclusions: α-LA-based therapy may ameliorate glucose metabolism and mitochondrial dysfunctions in siPBGD hepatocytes

    The rs599839 A>G Variant Disentangles Cardiovascular Risk and Hepatocellular Carcinoma in NAFLD Patients

    No full text
    Background and Aims: Dyslipidemia and cardiovascular diseases (CVD) are comorbidities of nonalcoholic fatty liver disease (NAFLD), which ranges from steatosis to hepatocellular carcinoma (HCC). The rs599839 A>G variant, in the CELSR2-PSRC1-SORT1 gene cluster, has been associated CVD, but its impact on metabolic traits and on the severity liver damage in NAFLD has not been investigated yet. Methods: We evaluated the effect of the rs599839 variant in 1426 NAFLD patients (Overall cohort) of whom 131 had HCC (NAFLD-HCC), in 500,000 individuals from the UK Biobank Cohort (UKBBC), and in 366 HCC samples from The Cancer Genome Atlas (TCGA). Hepatic PSRC1, SORT1 and CELSR2 expressions were evaluated by RNAseq (n = 125). Results: The rs599839 variant was associated with reduced circulating LDL, carotid intima-media thickness, carotid plaques and hypertension (p < 0.05) in NAFLD patients and with protection against dyslipidemia in UKBBC. The minor G allele was associated with higher risk of HCC, independently of fibrosis severity (odds ratio (OR): 5.62; 95% c.i. 1.77–17.84, p = 0.003), poor prognosis and advanced tumor stage (p < 0.05) in the overall cohort. Hepatic PSRC1, SORT1 and CELSR2 expressions were increased in NAFLD patients carrying the rs599839 variant (p < 0.0001). SORT1 mRNA levels negatively correlated with circulating lipids and with those of genes involved in lipoprotein turnover (p < 0.0001). Conversely, PSRC1 expression was positively related to that of genes implicated in cell proliferation (p < 0.0001). In TCGA, PSRC1 over-expression promoted more aggressive HCC development (p < 0.05). Conclusions: In sum, the rs599839 A>G variant is associated with protection against dyslipidemia and CVD in NAFLD patients, but as one it might promote HCC development by modulating SORT1 and PSRC1 expressions which impact on lipid metabolism and cell proliferation, respectively
    corecore