3 research outputs found

    Comparative Efficacy of Metformin and Glimepiride in Modulating Pharmacological Network to Increase BDNF Levels and Benefit Type 2 Diabetes-Related Cognitive Impairment

    No full text
    Cognitive impairment is anotable complication of type 2 diabetes (T2DM), accompanied by reduced brain-derived neurotrophic factor (BDNF) in the brain and blood. Anti-diabetic drugs reduce hyperglycemia, yet their effect on cognitive improvement is unknown. We aimed to investigate the effect of anti-diabetic drugs regulating BDNF in T2DM through computational and case-control study design. We obtained T2DMproteins viatext-mining to construct a T2DMprotein network. From the T2DMnetwork, the metformin and glimepiride interactomes and their crucial shortest-path-stimulating BDNF were identified. Using qRTPCR, the genes encoding the shortest-path proteins were assessed in four groups (untreated-T2DM, metformin-treated, glimepiride-treated, and healthy controls). Finally, ELISA was used to assess serum BDNF levels to validate drug efficacy. As a result of this investigation, aT2DMnetwork was constructed with 3683 text-mined proteins. Then, the T2DMnetwork was explored to generate a metformin and glimepiride interactome that establishes the critical shortest-path for BDNF stimulation. Metformin stimulates BDNF via APP binding to the PRKAB1 receptor. Whereas, glimepiride increases BDNF by binding to KCNJ11 via AP2M1 and ESR1 proteins. Both drug shortest-path encoding genes differed significantly between the groups. Unlike metformin, BDNF gene and protein expression rise significantly with glimepiride. Overall, glimepiride can effectively increase BDNF, which could benefit T2DM patients with cognitive deterioration

    Multidisciplinary Investigations on <i>Galphimia glauca</i>: A Mexican Medicinal Plant with Pharmacological Potential

    No full text
    Galphimia glauca (Cav.) Kuntze is an important endemic plant species, which possesses many medicinal properties and has been used in the Mexican traditional medicine for its sedative, anxiolytic, anticonvulsant, antiasthmatic and antiallergic properties. The therapeutic properties of this plant are mainly due to the presence of diverse bioactive compounds such as flavonoids, triterpenoids, and phenolics. Several triterpenoids and flavonoids compounds have been isolated and identified. Modern studies have demonstrated many biological activities such as anti-inflammatory, antidiarrheal, gastroenteritis, antimalarial and cytotoxic activities. Nevertheless, many studies are restricted to the crude extract, and many bioactive compounds are yet to be identified and validated according to its traditional use. However, its commercial exploitation and use are highly limited due to the non-availability of enough plant material and lack of knowledge about its agronomical practices. Moreover, the misinterpretation and mislabeling of closely related species of the genus Galphimia Cav. as G. glauca or G. gracilis is a common problem for its rigorous scientific study and commercial exploitation. The present review provides comprehensive knowledge based on the available scientific literature. To the best of our knowledge, this is the first review on G. glauca. This comprehensive information will certainly provide a guide for the better understanding and utilization of G. glauca for its scientific and industrial exploitation

    Nopal (Opuntia spp.) and its Effects on Metabolic Syndrome: New Insights for the Use of a Millenary Plant

    No full text
    corecore