859 research outputs found
Phase diagram of asymmetric Fermi gas across Feshbach resonance
We study the phase diagram of the dilute two-component Fermi gas at zero
temperature as a function of the polarization and coupling strength. We map out
the detailed phase separations between superfluid and normal states near the
Feshbach resonance. We show that there are three different coexistence of
superfluid and normal phases corresponding to phase separated states between:
(I) the partially polarized superfluid and the fully polarized normal phases,
(II) the unpolarized superfluid and the fully polarized normal phases and (III)
the unpolarized superfluid and the partially polarized normal phases from
strong-coupling BEC side to weak-coupling BCS side. For pairing between two
species, we found this phase separation regime gets wider and moves toward the
BEC side for the majority species are heavier but shifts to BCS side and
becomes narrow if they are lighter.Comment: 4 pages, 3 figures. Submitted to LT25 on June 200
Resonant pairing between Fermions with unequal masses
We study the pairing between Fermions of different masses, especially at the
unitary limit. At equal populations, the thermodynamic properties are identical
with the equal mass case provided an appropriate rescaling is made. At unequal
populations, for sufficiently light majority species, the system does not phase
separate. For sufficiently heavy majority species, the phase separated normal
phase have a density larger than that of the superfluid. For atoms in harmonic
traps, the density profiles for unequal mass Fermions can be drastically
different from their equal-mass counterparts.Comment: 10 pages, 4 figure
Superfluid stability in BEC-BCS crossover
We consider a dilute atomic gas of two species of fermions with unequal
concentrations under a Feshbach resonance. We find that the system can have
distinct properties due to the unbound fermions. The uniform state is stable
only when either (a) beyond a critical coupling strength, where it is a gapless
superfluid, or (b) when the coupling strength is sufficiently weak, where it is
a normal Fermi gas mixture. Phase transition(s) must therefore occur when the
resonance is crossed.Comment: 4 pages, 4 figure
Asymmetric Fermi superfluid with different atomic species in a harmonic trap
We study the dilute fermion gas with pairing between two species and unequal
concentrations in a harmonic trap using the mean field theory and the local
density approximation. We found that the system can exhibit a superfluid shell
structure sandwiched by the normal fermions. This superfluid shell structure
occurs if the mass ratio is larger then certain critical value which increases
from the weak-coupling BCS region to the strong-coupling BEC side. In the
strong coupling BEC regime, the radii of superfluid phase are less sensitive to
the mass ratios and are similar to the case of pairing with equal masses.
However, the lighter leftover fermions are easier to mix with the superfluid
core than the heavier ones. A partially polarized superfluid can be found if
the majority fermions are lighter, whereas phase separation is still found if
they are heavier.Comment: 12 pages, 7 figure
Asymmetric Fermi superfluid in a harmonic trap
We consider a dilute two-component atomic fermion gas with unequal
populations in a harmonic trap potential using the mean field theory and the
local density approximation. We show that the system is phase separated into
concentric shells with the superfluid in the core surrounded by the normal
fermion gas in both the weak-coupling BCS side and near the Feshbach resonance.
In the strong-coupling BEC side, the composite bosons and left-over fermions
can be mixed. We calculate the cloud radii and compare axial density profiles
systemically for the BCS, near resonance and BEC regimes.Comment: 15 pages, 5 figure
Superconductivity in the quasi-two-dimensional Hubbard model
On the basis of spin and pairing fluctuation-exchange approximation, we study
the superconductivity in quasi-two-dimensional Hubbard model. The integral
equations for the Green's function are self-consistently solved by numerical
calculation. Solutions for the order parameter, London penetration depth,
density of states, and transition temperature are obtained. Some of the results
are compared with the experiments for the cuprate high-temperature
superconductors. Numerical techniques are presented in details. With these
techniques, the amount of numerical computation can be greatly reduced.Comment: 17 pages, 13 figure
Theory of Nonlinear Meissner Effect in High-Tc Superconductors
We investigate the nonlinear Meissner effect microscopically. Previous
studies did not consider a certain type of interaction effect on the nonlinear
phenomena. The scattering amplitude barely appears without being renormalized
into the Fermi-liquid parameter. With this effect we can solve the outstanding
issues (the quantitative problem, the temperature and angle dependences). The
quantitative calculation is performed with use of the fluctuation-exchange
approximation on the Hubbard model. It is also shown that the perturbation
expansion on the supercurrent by the vector potential converges owing to the
nonlocal effect
Nitrogen-Functionalized Graphene Nanoflakes (GNFs:N): Tunable Photoluminescence and Electronic Structures
This study investigates the strong photoluminescence (PL) and X-ray excited
optical luminescence observed in nitrogen-functionalized 2D graphene nanoflakes
(GNFs:N), which arise from the significantly enhanced density of states in the
region of {\pi} states and the gap between {\pi} and {\pi}* states. The
increase in the number of the sp2 clusters in the form of pyridine-like N-C,
graphite-N-like, and the C=O bonding and the resonant energy transfer from the
N and O atoms to the sp2 clusters were found to be responsible for the blue
shift and the enhancement of the main PL emission feature. The enhanced PL is
strongly related to the induced changes of the electronic structures and
bonding properties, which were revealed by the X-ray absorption near-edge
structure, X-ray emission spectroscopy, and resonance inelastic X-ray
scattering. The study demonstrates that PL emission can be tailored through
appropriate tuning of the nitrogen and oxygen contents in GNFs and pave the way
for new optoelectronic devices.Comment: 8 pages, 6 figures (including toc figure
Collective Excitations in High-Temperature Superconductors
Collective, low-energy excitations in quasi-two-dimensional d-wave
superconductors are analyzed. While the long-range Coulomb interaction shifts
the charge-density-wave and phase modes up to the plasma energy, the
spin-density-wave excitation that arises due to a strong local
electron-electron repulsion can propagate as a damped collective mode within
the superconducting energy gap. It is suggested that these excitations are
relevant to high-Tc superconductors, close to the antiferromagnetic phase
boundary, and may explain some of the exotic features of the experimentally
observed spectral-density and neutron-scattering data.Comment: 5 jolly page
- …