68 research outputs found
Amp\`ere-Class Pulsed Field Emission from Carbon-Nanotube Cathodes in a Radiofrequency Resonator
Pulsed field emission from cold carbon-nanotube cathodes placed in a
radiofrequency resonant cavity was observed. The cathodes were located on the
backplate of a conventional -cell resonant cavity operating at
1.3-GHz and resulted in the production of bunch train with maximum average
current close to 0.7 Amp\`ere. The measured Fowler-Nordheim characteristic,
transverse emittance, and pulse duration are presented and, when possible,
compared to numerical simulations. The implications of our results to
high-average-current electron sources are briefly discussed.Comment: 5 pages, 6 figures; submitted to Applied Physics Letter
Corrigendum to Comparing Structure-Property Evolution for PM-HIP and Forged Alloy 625 Irradiated with Neutrons to 1dpa [Mater. Sci. Eng. A (2022) 144058]
The authors regret that after publication, they discovered that the dislocation loop number density was undercounted by a factor of 100 for both the PM-HIP and forged specimens. While this does not change the original major conclusions, this necessitates a change in the results presentation (Sections 3.2 and 4.1) and calculated hardening (Table 3, Fig. 5). Corrections to these affected sections are provided in this corrigendum
Generation of 10-m-lengthscale plasma columns by resonant and off-resonant laser pulses
Creating extended, highly homogeneous plasma columns like that required by
plasma wakefield accelerators can be a challenge. We study the propagation of
ultra-short, TW power ionizing laser pulses in a 10-meter-long rubidium vapor
and the plasma columns they create. We perform experiments and numerical
simulations for pulses with 780 nm central wavelength, which is resonant with
the D transition from the ground state of rubidium atoms, as well as for
pulses with 810 nm central wavelength, some distance from resonances. We
measure transmitted energy and transverse width of the pulse and use schlieren
imaging to probe the plasma column in the vapor close to the end of the vapor
source. We find, that resonant pulses are more confined in a transverse
direction by the interaction than off-resonant pulses are and that the plasma
channels they create are more sharply bounded. Off-resonant pulses leave a
wider layer of partially ionized atoms and thus lose more energy per unit
propagation distance. Using experimental data, we estimate the energy required
to generate a 20-meter-long plasma column and conclude that resonant pulses are
much more suitable for creating a long, homogeneous plasma.Comment: 12 pages, 14 figure
Mean transverse energy, surface chemical and physical characterization of CERN-made Cs-Te photocathodes
Cesium telluride photocathodes are known to offer high quantum efficiencies under UV illumination combined with good lifetimes compared to other semiconductor photocathodes, making them very popular electron sources for particle accelerator applications. The development of photocathode preparation, characterization, and related expertise at a single accelerator laboratory can be challenging, expensive, and time consuming. Recognizing this, we explored the use of a custom-designed ultrahigh vacuum suitcase for transportation of CERN-made (Switzerland) cesium telluride photocathodes to Daresbury Laboratory (UK) for characterization. We report the synthesis and characterization of a batch of four cesium telluride photocathodes corresponding to our second attempt of transport, following design and process improvements through lessons learned from our first attempt. The photocathode characterization involved, where possible, measurements of the surface elemental composition using x-ray photoelectron spectroscopy (XPS), surface roughness with an in-vacuum scanning tunneling microscope (STM), and quantum efficiency (QE) measurements. Transverse energy distribution curves were obtained over a wide range of illumination wavelengths using the transverse energy spread spectrometer (TESS) at room- and cryogenic temperatures, and the values for mean transverse energy (MTE) were extracted. The photocathodes exhibited distinct thicknesses ranging from âŒ50 toâŒ120ânm and significant MTE beyond the
photoemission threshold which is attributed to the presence of CsxO and Cs phases, as confirmed by XPS analysis. The photocathode that exhibited no carbon or oxygen contamination was measured to have the highest QE of 2.9% at a wavelength of 265 nm at the end of the performance characterization process. The results presented herein offer an insight into the achievements possible through international collaborations by successfully utilizing long-distance transportation of photocathodes by land under ultrahigh vacuum conditions
Experimental study of extended timescale dynamics of a plasma wakefield driven by a self-modulated proton bunch
Plasma wakefield dynamics over timescales up to 800 ps, approximately 100 plasma periods, are studied
experimentally at the Advanced Wakefield Experiment (AWAKE). The development of the longitudinal
wakefield amplitude driven by a self-modulated proton bunch is measured using the external injection of
witness electrons that sample the fields. In simulation, resonant excitation of the wakefield causes plasma
electron trajectory crossing, resulting in the development of a potential outside the plasma boundary as
electrons are transversely ejected. Trends consistent with the presence of this potential are experimentally
measured and their dependence on wakefield amplitude are studied via seed laser timing scans and electron
injection delay scan
Simulation and experimental study of proton bunch self-modulation in plasma with linear density gradients
We present numerical simulations and experimental results of the self-modulation of a long proton bunch in a plasma with linear density gradients along the beam path. Simulation results agree with the experimental results reported [F. Braunmller, T. Nechaeva et al. (AWAKE Collaboration), Phys. Rev. Lett. 125, 264801 (2020)PRLTAO0031-900710.1103/PhysRevLett.125.264801]: with negative gradients, the charge of the modulated bunch is lower than with positive gradients. In addition, the bunch modulation frequency varies with gradient. Simulation results show that dephasing of the wakefields with respect to the relativistic protons along the plasma is the main cause for the loss of charge. The study of the modulation frequency reveals details about the evolution of the self-modulation process along the plasma. In particular for negative gradients, the modulation frequency across time-resolved images of the bunch indicates the position along the plasma where protons leave the wakefields. Simulations and experimental results are in excellent agreement
Simulation and experimental study of proton bunch self-modulation in plasma with linear density gradients
We present numerical simulations and experimental results of the self-modulation of a long proton bunch in a plasma with linear density gradients along the beam path. Simulation results agree with the experimental results reported [F. Braunmller, T. Nechaeva et al. (AWAKE Collaboration), Phys. Rev. Lett. 125, 264801 (2020)]: with negative gradients, the charge of the modulated bunch is lower than with positive gradients. In addition, the bunch modulation frequency varies with gradient. Simulation results show that dephasing of the wakefields with respect to the relativistic protons along the plasma is the main cause for the loss of charge. The study of the modulation frequency reveals details about the evolution of the self-modulation process along the plasma. In particular for negative gradients, the modulation frequency across time-resolved images of the bunch indicates the position along the plasma where protons leave the wakefields. Simulations and experimental results are in excellent agreement
- âŠ