8 research outputs found
Bimodal Active Shape Models for Cervical Vertebrae and Spinal Canal Boundary Extraction
Cervical spine pathologies often stem from deformations of the intervertebral discs and spinal canal. This work introduces a computational method for boundary extraction of these structures. The proposed method employs an active shape model (ASM) and is bimodal, in the sense that computed tomography (CT) images are used for ASM training and magnetic resonance (MR) images are used for ASM testing. The proposed method is less dependent on large amounts of training samples than deep learning methods, whereas it involves limited user intervention. Still, it is comparable to state-of-the-art methods in terms of segmentation quality, as demonstrated in our experimental comparisons
Multimodal registration of retinal images using self organizing maps
Abstract-In this paper, an automatic method for registering multimodal retinal images is presented. The method consists of three steps: the vessel centerline detection and extraction of bifurcation points only in the reference image, the automatic correspondence of bifurcation points in the two images using a novel implementation of the self organizing maps and the extraction of the parameters of the affine transform using the previously obtained correspondences. The proposed registration algorithm was tested on 24 multimodal retinal pairs and the obtained results show an advantageous performance in terms of accuracy with respect to the manual registration
A classification system based on a new wrapper feature selection algorithm for the diagnosis of primary and secondary polycythemia
Primary and Secondary Polycythemia are diseases of the bone marrow that affect the blood's composition and prohibit patients from becoming blood donors. Since these diseases may become fatal, their early diagnosis is important. In this paper, a classification system for the diagnosis of Primary and Secondary Polycythemia is proposed. The proposed system classifies input data into three classes; Healthy, Primary Polycythemic (PP) and Secondary Polycythemic (SP) and is implemented using two separate binary classification levels. The first level performs the Healthy/non-Healthy classification and the second level the PP/SP classification. To this end, a novel wrapper feature selection algorithm, called the LM-FM algorithm, is presented in order to maximize the classifier's performance. The algorithm is comprised of two stages that are applied sequentially: the Local Maximization (LM) stage and the Floating Maximization (FM) stage. The LM stage finds the best possible subset of a fixed predefined size, which is then used as an input for the next stage. The FM stage uses a floating size technique to search for an even better solution by varying the initially provided subset size. Then, the Support Vector Machine (SVM) classifier is used for the discrimination of the data at each classification level. The proposed classification system is compared with various well-established feature selection techniques such as the Sequential Floating Forward Selection (SFFS) and the Maximum Output Information (MOI) wrapper schemes, and with standalone classification techniques such as the Multilayer Perceptron (MLP) and SVM classifier. The proposed LM-FM feature selection algorithm combined with the SVM classifier increases the overall performance of the classification system, scoring up to 98.9% overall accuracy at the first classification level and up to 96.6% at the second classification level. Moreover, it provides excellent robustness regardless of the size of the input feature subset used. (C) 2013 Elsevier Ltd. All rights reserved