1,571 research outputs found

    Identification of the major cause of endemically poor mobilities in SiC/SiO2 structures

    Full text link
    Materials with good carrier mobilities are desired for device applications, but in real devices the mobilities are usually limited by the presence of interfaces and contacts. Mobility degradation at semiconductor-dielectric interfaces is generally attributed to defects at the interface or inside the dielectric, as is the case in Si/SiO2 structures, where processing does not introduce detrimental defects in the semiconductor. In the case of SiC/SiO2 structures, a decade of research focused on reducing or passivating interface and oxide defects, but the low mobilities have persisted. By invoking theoretical results and available experimental evidence, we show that thermal oxidation generates carbon di-interstitial defects inside the semiconductor substrate and that they are a major cause of the poor mobility in SiC/SiO2 structures

    Characteristics and Origins of Modern and Enduring Japanese Managerial Practice

    Get PDF
    Japan was transformed after World War II into an industrial powerhouse. The combination of strategic support from the West, together with a unique set of cultural factors which manifest themselves in the corporate management culture, left many Western managers in awe at what Japan could accomplish in such a short period. Unfortunately the same factors that enabled Japan to become so strong also became impediments to Japanese organizations as globalization develop. Japan addressed these new trends and made efforts towards conforming to new realities; however venerated traditionally-conservative organizations which endured for many years did little to change these managerial practices

    Variability of structural and electronic properties of bulk and monolayer Si2Te3

    Full text link
    Since the emergence of monolayer graphene as a promising two-dimensional material, many other monolayer and few-layer materials have been investigated extensively. An experimental study of few-layer Si2Te3 was recently reported, showing that the material has diverse properties for potential applications in Si-based devices ranging from fully integrated thermoelectrics to optoelectronics to chemical sensors. This material has a unique layered structure: it has a hexagonal closed-packed Te sublattice, with Si dimers occupying octahedral intercalation sites. Here we report a theoretical study of this material in both bulk and monolayer form, unveiling a fascinating array of diverse properties arising from reorientations of the silicon dimers between planes of Te atoms. The lattice constant varies up to 5% and the band gap varies up to 40% depending on dimer orientations. The monolayer band gap is 0.4 eV larger than the bulk-phase value for the lowest-energy configuration of Si dimers. These properties are, in principle, controllable by temperature and strain, making Si2T3 a promising candidate material for nanoscale mechanical, optical, and memristive devices.Comment: 9 pages, 4 figure

    Control of Seismic Response of Structures

    Get PDF
    Safety requirements for structures built in seismic regions have led to techniques for absorbing the energy induced to these structures by earthquakes. Passive isolation systems such as base isolators are suitable for low-rise structures but they provide only a partial solution to the problem. This paper presents three active control techniques for reducing the dynamic response of machine supporting foundations. The concept of active control is discussed and various control strategies are presented. The active tendon system (ATS), active mass damper (AMD), and active base control (ABC) mechanisms are examined. Both optimal and non-optimal control algorithms are described and numerical simulations are performed. It is shown that active control can reduce the dynamic response of turbomachines and their foundations under both normal operation, and emergency conditions such as earthquakes

    Mapping the wavefunction of transition metal acceptor states in the GaAs surface

    Full text link
    We utilize a single atom substitution technique with spectroscopic imaging in a scanning tunneling microscope (STM) to visualize the anisotropic spatial structure of magnetic and non-magnetic transition metal acceptor states in the GaAs (110) surface. The character of the defect states play a critical role in the properties of the semiconductor, the localization of the states influencing such things as the onset of the metal-insulator transition, and in dilute magnetic semiconductors the mechanism and strength of magnetic interactions that lead to the emergence of ferromagnetism. We study these states in the GaAs surface finding remarkable similarities between the shape of the acceptor state wavefunction for Mn, Fe, Co and Zn dopants, which is determined by the GaAs host and is generally reproduced by tight binding calculations of Mn in bulk GaAs [Tang, J.M. & Flatte, M.E., Phys. Rev. Lett. 92, 047201 (2004)]. The similarities originate from the antibonding nature of the acceptor states that arise from the hybridization of the impurity d-levels with the host. A second deeper in-gap state is also observed for Fe and Co that can be explained by the symmetry breaking of the surface.Comment: 19 pages, 6 figure

    Atomic-Scale Dynamics of the Formation and Dissolution of Carbon Clusters in SiO2

    Full text link
    Oxidation of SiC produces SiO2 while CO is released. A `reoxidation' step at lower temperatures is, however, necessary to produce high-quality SiO2. This step is believed to cleanse the oxide of residual C without further oxidation of the SiC substrate. We report first-principles calculations that describe the nucleation and growth of O-deficient C clusters in SiO2 under oxidation conditions, fed by the production of CO at the advancing interface, and their gradual dissolution by the supply of O under reoxidation conditions. We predict that both CO and CO2 are released during both steps.Comment: RevTex, 4 pages, 2 ps figures, to appear in Phys. Rev. Lett. (June 25, 2001

    Spin-dependent resonant tunneling through quantum-well states in magnetic metallic thin films

    Full text link
    Quantum-well (QW) states in {\it nonmagnetic} metal layers contained in magnetic multilayers are known to be important in spin-dependent transport, but the role of QW states in {\it magnetic} layers remains elusive. Here we identify the conditions and mechanisms for resonant tunneling through QW states in magnetic layers and determine candidate structures. We report first-principles calculations of spin-dependent transport in epitaxial Fe/MgO/FeO/Fe/Cr and Co/MgO/Fe/Cr tunnel junctions. We demonstrate the formation of sharp QW states in the Fe layer and show discrete conductance jumps as the QW states enter the transport window with increasing bias. At resonance, the current increases by one to two orders of magnitude. The tunneling magnetoresistance ratio is several times larger than in simple spin tunnel junctions and is positive (negative) for majority- (minority-) spin resonances, with a large asymmetry between positive and negative biases. The results can serve as the basis for novel spintronic devices.Comment: 4 figures in 5 eps file
    corecore