111 research outputs found
Athletic population with spondylolysis: review of outcomes following surgical repair or conservative management
Objective
The study aims to critically review the outcomes associated with the surgical repair or conservative management of spondylolysis in athletes.
Methods
The English literature listed in MEDLINE/PubMed was reviewed to identify related articles using the term âspondylolysis AND athlete.â The criteria for studies to be included were management of spondylolysis in athletes, English text, and no year, follow-up, or study design restrictions. The references of the retrieved articles were also evaluated. The primary outcome was time to return to sport. This search yielded 180 citations, and 25 publications were included in the review.
Results
Treatment methods were dichotomized as operative and nonoperative. In the nonoperative group, 390 athletes were included. A combination of bracing with physical therapy and restriction of activities was used. Conservative measures allowed athletes to return to sport in 3.7 months (weighted mean). One hundred seventy-four patients were treated surgically. The most common technique was Buck's, using a compression screw (91/174). All authors reported satisfactory outcomes. Time to return to play was 7.9 months (weighted mean). There were insufficient studies with suitably homogenous subgroups to conduct a meta-analysis.
Conclusion
There is no gold standard approach for the management of spondylolysis in the athletic population. The existing literature suggests initial therapy should be a course of conservative management with thoracolumbosacral orthosis brace, physiotherapy, and activity modification. If conservative management fails, surgical intervention should be considered. Two-sided clinical studies are needed to determine an optimal pathway for the management of athletes with spondylolysis
Thermal-optical analysis for the measurement of elemental carbon (EC) and organic carbon (OC) in ambient air a literature review
Thermal-optical analysis is currently under consideration by the European standardization body (CEN) as the reference method to quantitatively determine organic carbon (OC) and elemental carbon (EC) in ambient air. This paper presents an overview of the critical parameters related to the thermal-optical analysis including thermal protocols, critical factors and interferences of the methods examined, method inter-comparisons, inter-laboratory exercises, biases and artifacts, and reference materials. The most commonly used thermal protocols include NIOSH-like, IMPROVE_A and EUSAAR_2 protocols either with light transmittance or reflectance correction for charring. All thermal evolution protocols are comparable for total carbon (TC) concentrations but the results vary significantly concerning OC and especially EC concentrations. Thermal protocols with a rather low peak temperature in the inert mode like IMPROVE_A and EUSAAR_2 tend to classify more carbon as EC compared to NIOSH-like protocols, while charring correction based on transmittance usually leads to smaller EC values compared to reflectance. The difference between reflectance and transmittance correction tends to be larger than the difference between different thermal protocols. Nevertheless, thermal protocols seem to correlate better when reflectance is used as charring correction method. The difference between EC values as determined by the different protocols is not only dependent on the optical pyrolysis correction method, but also on the chemical properties of the samples due to different contributions from various sources. The overall conclusion from this literature review is that it is not possible to identify the "best" thermal-optical protocol based on literature data only, although differences attributed to the methods have been quantified when possible.This work was undertaken under Mandate M/503 âStandardisation mandate to CEN, CENELEC and ETSI in support of the implementation of the Ambient Air Quality Legislationâ, ENX âAmbient air â Measurement of airborne lemental carbon (EC) and organic carbon (OC) in PM 2.5 deposited on filtersâ.EUR 1,920 APC fee funded by the EC FP7 Post-Grant Open Access PilotPeer reviewe
Clues for a standardised thermal-optical protocol for the assessment of organic and elemental carbon within ambient air particulate matter
Along with some research networking programmes, the European Directive
2008/50/CE requires chemical speciation of fine aerosol (PM<sub>2.5</sub>),
including elemental (EC) and organic carbon (OC), at a few rural sites in
European countries. Meanwhile, the thermal-optical technique is considered by
the European and US networking agencies and normalisation bodies as a
reference method to quantify ECâOC collected on filters. Although commonly
used for many years, this technique still suffers from a lack of
information on the comparability of the different analytical protocols
(temperature protocols, type of optical correction) currently applied in the
laboratories. To better evaluate the ECâOC data set quality and related
uncertainties, the French National Reference Laboratory for Ambient Air
Quality Monitoring (LCSQA) organised an ECâOC comparison exercise for
French laboratories using different thermal-optical methods (five laboratories
only). While there is good agreement on total carbon (TC) measurements among
all participants, some differences can be observed on the EC / TC ratio, even
among laboratories using the same thermal protocol. These results led to
further tests on the influence of the optical correction: results obtained
from different European laboratories confirmed that there were higher
differences between OC<sub>TOT</sub> and OC<sub>TOR</sub> measured with
NIOSH 5040 in comparison to EUSAAR-2. Also, striking differences between
EC<sub>TOT</sub> / EC<sub>TOR</sub> ratios can be observed when comparing
results obtained for rural and urban samples, with EC<sub>TOT</sub> being
50% lower than EC<sub>TOR</sub> at rural sites whereas it is only
20% lower at urban sites. The PM chemical composition could explain
these differences but the way it influences the ECâOC measurement is not
clear and needs further investigation. Meanwhile, some additional tests seem
to indicate an influence of oven soiling on the ECâOC measurement data
quality. This highlights the necessity to follow the laser signal decrease
with time and its impact on measurements. Nevertheless, this should be
confirmed by further experiments, involving more samples and various
instruments, to enable statistical processing. All these results provide
insights to determine the quality of ECâOC analytical methods and may
contribute to the work toward establishing method standardisation
ECOC comparison exercise with identical thermal protocols after temperature offset correction - Instrument diagnostics by in-depth evaluation of operational parameters
© Author(s) 2015. A comparison exercise on thermal-optical elemental carbon/organic carbon (ECOC) analysers was carried out among 17 European laboratories. Contrary to previous comparison exercises, the 17 participants made use of an identical instrument set-up, after correcting for temperature offsets with the application of a recently developed temperature calibration kit (Sunset Laboratory Inc, OR, US). Temperature offsets reported by participants ranged from -93 to +100 °C per temperature step. Five filter samples and two sucrose solutions were analysed with both the EUSAAR2 and NIOSH870 thermal protocols. z scores were calculated for total carbon (TC); nine outliers and three stragglers were identified. Three outliers and eight stragglers were found for EC. Overall, the participants provided results between the warning levels with the exception of two laboratories that showed poor performance, the causes of which were identified and corrected through the course of the comparison exercise. The TC repeatability and reproducibility (expressed as relative standard deviations) were 11 and 15% for EUSAAR2 and 9.2 and 12% for NIOSH870; the standard deviations for EC were 15 and 20% for EUSAAR2 and 20 and 26% for NIOSH870. TC was in good agreement between the two protocols, TCNIOSH870 =0.98 à TCEUSAAR2 (R2 = 1.00, robust means). Transmittance (TOT) calculated EC for NIOSH870 was found to be 20% lower than for EUSAAR2, ECNIOSH870 = 0.80 à ECEUSAAR2 (R2 = 0.96, robust means). The thermograms and laser signal values were compared and similar peak patterns were observed per sample and protocol for most participants. Notable deviations from the typical patterns indicated either the absence or inaccurate application of the temperature calibration procedure and/or pre-oxidation during the inert phase of the analysis. Low or zero pyrolytic organic carbon (POC), as reported by a few participants, is suggested as an indicator of an instrument-specific pre-oxidation. A sample-specific pre-oxidation effect was observed for filter G, for all participants and both thermal protocols, indicating the presence of oxygen donors on the suspended particulate matter. POC (TOT) levels were lower for NIOSH870 than for EUSAAR2, which is related to the heating profile differences of the two thermal protocols
Standardisation of a European measurement method for organic carbon and elemental carbon in ambient air: results of the field trial campaign and the determination of a measurement uncertainty and working range
The European Committee for Standardisation (CEN) Technical Committee 264 'Air Quality' has recently produced a standard method for the measurements of organic carbon and elemental carbon in PM2.5 within its working group 35 in response to the requirements of European Directive 2008/50/EC. It is expected that this method will be used in future by all Member States making measurements of the carbonaceous content of PM2.5. This paper details the results of a laboratory and field measurement campaign and the statistical analysis performed to validate the standard method, assess its uncertainty and define its working range to provide clarity and confidence in the underpinning science for future users of the method. The statistical analysis showed that the expanded combined uncertainty for transmittance protocol measurements of OC, EC and TC is expected to be below 25%, at the 95% level of confidence, above filter loadings of 2 ÎŒg cm-2. An estimation of the detection limit of the method for total carbon was 2 ÎŒg cm-2. As a result of the laboratory and field measurement campaign the EUSAAR2 transmittance measurement protocol was chosen as the basis of the standard method EN 16909:2017.In particular, WG35 thank the local site operators at each of the field locations for operating the monitoring stations to such a high standard. The funding of CEN/TC264/WG35's laboratory and field trials by the European Commission's Environment Directorate-General and the contribution and discussions of the members of CEN/TC 264/WG35, are gratefully acknowledged. Funding of the UK National Measurement System by the UK Department for Business, Innovation and Skills is also gratefully acknowledged.Peer reviewe
Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility
We analyzed genetic data of 47,429 multiple sclerosis (MS) and 68,374 control subjects and established a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 variants within the extended MHC. We used an ensemble of methods to prioritize 551 putative susceptibility genes that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we observed enrichment for MS genes in these brain-resident immune cells, suggesting that these may have a role in targeting an autoimmune process to the central nervous system, although MS is most likely initially triggered by perturbation of peripheral immune responses
Ultrafine particles in four European urban environments: Results from a new continuous long-term monitoring network
To gain a better understanding on the spatiotemporal variation of ultrafine particles (UFPs) in urban environments, this study reports on the first results of a long-term UFP monitoring network, set up in Amsterdam (NL), Antwerp (BE), Leicester (UK) and London (UK). Total number concentrations and size distributions were assessed during 1e2 years at four fixed urban background sites, supplemented with mobile trailer measurements for co-location monitoring and additional short-term monitoring sites. Intra- and interurban spatiotemporal UFP variation, associations with commonly-monitored pollutants (PM, NOx and BC) and impacts of wind fields were evaluated. Although comparable size distributions were observed between the four cities, source-related differences were demonstrated within specific particle size classes. Total and size-resolved particle number concentrations showed clear traffic-related temporal variation, confirming road traffic as the major UFP contributor in urban environments. New particle formation events were observed in all cities. Correlations with typical traffic-related pollutants (BC and NOx) were obtained for all monitoring stations, except for Amsterdam, which might be attributable to UFP emissions from Schiphol airport. The temporal variation in particle number concentration correlated fairly weakly between the four cities (rs = 0.28 0.50, COD = 0.28 0.37), yet improved significantly inside individual cities (rs = 0.59-0.77). Nevertheless, considerable differences were still obtained in terms of particle numbers (20-38% for total particle numbers and up to 49% for size-resolved particle numbers), confirming the importance of local source contributions and the need for careful consideration when allocating UFP monitoring stations in heterogeneous urban environments
- âŠ