10 research outputs found

    Synthesis and Anticancer Evaluation of Benzenesulfonamide Derivatives

    Get PDF
    A highly efficient protocol was developed for the synthesis of 3-(indoline-1-carbonyl)-N-(substituted) benzene sulfonamide analogs with excellent yields. The new 3-(indoline-1-carbonyl)-N-(substituted) benzene sulfonamide derivatives (4a-g and 5a-g) were evaluated in vitro anticancer activity against a series of different cell lines like A549 (lung cancer cell), HeLa (cervical), MCF-7 (breast cancer cell) and Du-145 (prostate cancer cell) respectively. The results of the anticancer activity data revealed that most of the tested compounds showed IC50 values from 1.98 to 9.12 μM in different cell lines. Compounds 4b, 4d, 5d, and 5g were the most potent, with IC50 values ranging from 1.98 to 2.72 μM in different cell lines

    Synthesis and antiproliferative activity of 3-(substituted)-4,5,6,7-tetrahydro-6-(substituted)-1H-pyrazolo[3,4-c]pyridine derivatives

    Get PDF
    A series of new molecules having 3-(substituted)-4,5,6,7-tetrahydro-6-(substituted)-1H-pyrazolo[3,4-c]pyridine and 3-(substituted)-5,6-dihydro-6-(substituted)-1H-pyrazolo[3,4-c] pyridin-7(4H)-one derivatives were designed and synthesized in large scale (grams range). The structures of the synthesized compounds were elucidated and confirmed by 1H NMR, 13C NMR, Mass spectra; and purity was also checked through LC/MS and HPLC analysis. The antiproliferative activity of the compounds was checked for lung cancer, cervical cancer, breast cancer and prostate cancer on panel of four cell lines. A few compounds (13c, 13g, 15g and 15h) showed promising antiproliferative activity in the range of 5.12-17.12 µM which were further tested for their inhibitory activity against panel of 8 human kinases at 10 µM concentrations. The compounds 13c, 13g, 15g and 15h shows prominent inhibitory activity against Aurora-A, Aurora-B, CDK5/P25 and mTOR kinases

    Synthesis and antiproliferative evaluation of new (4-substituted-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-yl)methane substituted sulfonamide derivatives

    Get PDF
    A series of new molecules having 4-substituted-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-yl)methane substituted sulfonamide derivatives were synthesized. The structures of the synthesized compounds were elucidated and confirmed by 1H NMR, 13C NMR, Mass spectra, and the purity was checked through HPLC analysis. The compounds were also evaluated for their in vitro antiproliferative activity against MCF-7, HeLa, A-549 and DU-145 cancer cell lines by MTT assay. Compounds 4d, 7c and 7d were tested for their activity against a panel of eight human kinase at 10 µM concentrations. Among them the compounds 4d and 7d showed very promising activity against CDK5/P25 kinase with 66 and 70% inhibitions, respectively. Compound 7c also showed promising activity of 59% inhibition. The preliminary bioassay showed that most of the compounds were antiproliferative with different degrees, and some compounds showed better activity than 5-fluorouracil which was used as positive control

    Synthesis of 3H-imidazo[4,5-b] pyridine with evaluation of their anticancer and antimicrobial activity

    Get PDF
    Microwave assisted and conventional synthetic methods of new 6-bromo-2-(substituted)-3H-imidazo[4,5-b]pyridine and its derivatives are described, which were obtained in reduced reaction times, higher yields, cleaner reactions than previously described methods. All the synthesized compounds were characterized, and screened for their anticancer and antimicrobial activity. Among synthesized compounds 3b and 3k shows prominent antibacterial activity and compound 3f shows both antibacterial and antifungal activity. Compounds 3h and 3j shows prominent anticancer activity against the both breast cancer cell lines, MCF-7 and BT-474. These results suggest that the imidazo[4,5-b]pyridine moiety may serve as a new promising template for synthesis of anticancer and antimicrobial agents and further study is required for evaluation of their mechanism of action

    Synthesis of new 3-(substituted-phenyl)-N-(2-hydroxy-2-(substituted-phenyl)ethyl)-N-methylthiophene-2-sulfonamide derivatives as antiproliferative agents

    Get PDF
    In the present work, we report the synthesis of a series of 3-(substituted phenyl)-N-(2-hydroxy-2-(substituted-phenyl)ethyl)-N-methylthiophene-2-sulfonamide derivatives through Suzuki and Buchwald reaction. We have optimized methodology for targets from milligram to multi-gram scale. The newly synthesized compounds were characterized by 1H NMR, 19F NMR, 13C NMR, LC-MS techniques and purity was further checked by HPLC. The compounds were evaluated for their in-vitro antiproliferative activity against MCF-7, HeLa, A-549 and Du-145 cancer cell lines by CCK-8 assay. The preliminary bioassay suggests that most of the compounds show antiproliferation with different degrees and 5-fluorouracil was used as positive control. Among these compounds 2d, 2g, 2i, 4e, 4h and 4k are most active compared to the standard. All the synthesized compounds show IC50 values from 1.82-9.52 µM in different cell lines. Amongst these, compounds 2d, 2g, 2i, 4e, 4h and 4k were most potent, with IC50 values ranging from 1.82-4.28 µM in different cell lines

    Synthesis and Antimicrobial Activity of new (Z)-2-((5-(4- Hydroxybenzylidene)-4-Oxo-4,5-Dihydrothiazol-2-Yl)Amino) Acid and its Derivatives

    No full text
    ABSTRACT A series of (Z)-2-((5-(4-hydroxybenzylidene)-4-oxo-4,5-dihydrothiazol-2-yl)amino) acid and its derivatives were synthesized from appropriate 2-thioxothiazolidin-4-one using nucleophilic substitution and Knoevenagel condensation. All compounds have been synthesized, characterized and screened for their antimicrobial activity against gram positive bacteria and gram negative bacteria along with Ampicillin and Ciprofloxacin as standard drug. According to results obtained all compound shows good to moderate activity against all strain tested, compatible to Ampicillin but lower than Ciprofloxacin. Amongst these compounds (6c) shows very good and moderate activity as compare to standards drugs against Gram positive bacteria B. subtilus and S. aureus. Some of the most potent compounds, namely (6b, 6h and 6j) possessed selectively antimicrobial activity

    A facile synthesis of novel series (Z)-2-((4-oxo-5-(thiophen-2-ylmethylene)-4,5-dihydrothiazol-2-yl)amino) substituted acid

    No full text
    A new effective approach to the synthesis of some novel series of (Z)-2-((4-oxo-5-(thiophen-2-ylmethylene)-4,5-dihydrothiazol-2-yl)amino) substituted acid is reported at room temperature, less reaction time with good to excellent yields

    Synthesis and antiproliferative evaluation of new (4-substituted-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-yl)methane substituted sulfonamide derivatives

    No full text
    A series of new molecules having 4-substituted-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-yl)methane substituted sulfonamide derivatives were synthesized. The structures of the synthesized compounds were elucidated and confirmed by 1H NMR, 13C NMR, Mass spectra, and the purity was checked through HPLC analysis. The compounds were also evaluated for their in vitro antiproliferative activity against MCF-7, HeLa, A-549 and DU-145 cancer cell lines by MTT assay. Compounds 4d, 7c and 7d were tested for their activity against a panel of eight human kinase at 10 µM concentrations. Among them the compounds 4d and 7d showed very promising activity against CDK5/P25 kinase with 66 and 70% inhibitions, respectively. Compound 7c also showed promising activity of 59% inhibition. The preliminary bioassay showed that most of the compounds were antiproliferative with different degrees, and some compounds showed better activity than 5-fluorouracil which was used as positive control

    Synthesis of 3H-imidazo[4,5-b] pyridine with evaluation of their anticancer and antimicrobial activity

    No full text
    Microwave assisted and conventional synthetic methods of new 6-bromo-2-(substituted)-3H-imidazo[4,5-b]pyridine and its derivatives are described, which were obtained in reduced reaction times, higher yields, cleaner reactions than previously described methods. All the synthesized compounds were characterized, and screened for their anticancer and antimicrobial activity. Among synthesized compounds 3b and 3k shows prominent antibacterial activity and compound 3f shows both antibacterial and antifungal activity. Compounds 3h and 3j shows prominent anticancer activity against the both breast cancer cell lines, MCF-7 and BT-474. These results suggest that the imidazo[4,5-b]pyridine moiety may serve as a new promising template for synthesis of anticancer and antimicrobial agents and further study is required for evaluation of their mechanism of action

    A facile synthesis and characterization of some novel benzimidazole derivatives

    No full text
    We successfully synthesized a series of novel benzimidazole derivatives with high yields in our current research study. The synthesis procedure involved condensing Ethyl 3-[[3-amino-4-(treiethylamino) benzoyl] (pyridine-5-yl) amino]-propanoate with various aromatic carboxylic acids, using EDC.HCl and a small amount of DMAP as catalysts. The resulting compounds underwent cyclization through coupling in the presence of acetic acid under reflux conditions. Notably, both the coupling and cyclization reactions were efficiently achieved, with the former occurring at room temperature and the latter at reflux temperature. Our synthesis method is both environmentally friendly and cost-effective. To characterize the synthesized compounds, we employed modern spectroscopic techniques such as FT-IR, 1H NMR, 13C NMR, and mass spectrometry. The compound 4i shown the most potent in vitro anticancer activity. The compound 4e and 4f were also found to have good in vitro anticancer activity compared to other synthesized compounds. The result of in vitro anticancer activity says that the combination of pyridine, benzimidazole and thiophene ring best apposite for the development of novel anticancer agent. The other derivatives have also shown good activity such as compounds 4b, 4c, 4 h and 4j with electron withdrawing group on phenyl ring
    corecore