15 research outputs found
Fumarate and nitrate reduction (FNR) dependent activation of the Escherichia coli anaerobic ribonucleotide reductase nrdDG promoter
The nrdDG promoter regulates transcriptional expression of the anaerobic ribonucleotide reductase of Escherichia coli, an essential enzyme required to supply the building blocks for DNA synthesis. In this work, binding of the
pleiotropic FNR (fumarate and nitrate reduction) transcriptional regulator to the nrdDG promoter region and the effects of binding on transcription were investigated. Gel retardation analysis with purified FNR* demonstrated FNR interaction at two FNR sites, termed FNR-2 and FNR-1, while studies with altered FNR boxes indicated that the upstream FNR-2 site was essential for anaerobic activation of the nrdDG promoter. Although the FNR-1 site was not absolutely required, it allowed maximal expression of this promoter. These results suggest that the two sites have an additive effect in coordinating nrdDG expression in response to shifting oxygen concentrations. [Int Microbiol 2008; 11(1):49-56
Fumarate and nitrate reduction (FNR) dependent activation of the Escherichia coli anaerobic ribonucleotide reductase nrdDG promoter
The nrdDG promoter regulates transcriptional expression of the anaerobic ribonucleotide reductase of Escherichia coli, an essential enzyme required to supply the building blocks for DNA synthesis. In this work, binding of the pleiotropic FNR (fumarate and nitrate reduction) transcriptional regulator to the nrdDG promoter region and the effects of binding on transcription were investigated. Gel retardation analysis with purified FNR* demonstrated FNR interaction at two FNR sites, termed FNR-2 and FNR-1, while studies with altered FNR boxes indicated that the upstream FNR-2 site was essential for anaerobic activation of the nrdDG promoter. Although the FNR-1 site was not absolutely required, it allowed maximal expression of this promoter. These results suggest that the two sites have an additive effect in coordinating nrdDG expression in response to shifting oxygen concentrations
B-Lymphocyte Phenotype Determines T-Lymphocyte Subset Differentiation in Autoimmune Diabetes.
Previous studies indicate that B-lymphocytes play a key role activating diabetogenic T-lymphocytes during the development of autoimmune diabetes. Recently, two transgenic NOD mouse models were generated: the NOD-PerIg and the 116C-NOD mice. In NOD-PerIg mice, B-lymphocytes acquire an activated proliferative phenotype and support accelerated autoimmune diabetes development. In contrast, in 116C-NOD mice, B-lymphocytes display an anergic-like phenotype delaying autoimmune diabetes onset and decreasing disease incidence. The present study further evaluates the T- and B-lymphocyte phenotype in both models. In islet-infiltrating B-lymphocytes (IIBLs) from 116C-NOD mice, the expression of H2-Kd and H2-Ag7 is decreased, whereas that of BAFF, BAFF-R, and TACI is increased. In contrast, IIBLs from NOD-PerIg show an increase in CD86 and FAS expression. In addition, islet-infiltrating T-lymphocytes (IITLs) from NOD-PerIg mice exhibit an increase in PD-1 expression. Moreover, proliferation assays indicate a high capacity of B-lymphocytes from NOD-PerIg mice to secrete high amounts of cytokines and induce T-lymphocyte activation compared to 116C B-lymphocytes. This functional variability between 116C and PerIg B-lymphocytes ultimately results in differences in the ability to shape T-lymphocyte phenotype. These results support the role of B-lymphocytes as key regulators of T-lymphocytes in autoimmune diabetes and provide essential information on the phenotypic characteristics of the T- and B-lymphocytes involved in the autoimmune response in autoimmune diabetes
T-type calcium channels drive migration/invasion in BRAFV600E melanoma cells through Snail1
Melanoma is a malignant tumor derived from melanocytes. Once disseminated, it is usually highly resistant to chemotherapy and is associated with poor prognosis. We have recently reported that T-type calcium channels (TTCCs) are overexpressed in melanoma cells and play an important role in melanoma progression. Importantly, TTCC pharmacological blockers reduce proliferation and deregulate autophagy leading to apoptosis. Here, we analyze the role of autophagy during migration/invasion of melanoma cells. TTCC Cav3.1 and LC3-II proteins are highly expressed in BRAFV600E compared with NRAS mutant melanomas, both in cell lines and biopsies. Chloroquine, pharmacological blockade, or gene silencing of TTCCs inhibit the autophagic flux and impair the migration and invasion capabilities, specifically in BRAFV600E melanoma cells. Snail1 plays an important role in motility and invasion of melanoma cells. We show that Snail1 is strongly expressed in BRAFV600E melanoma cells and patient biopsies, and its expression decreases when autophagy is blocked. These results demonstrate a role of Snail1 during BRAFV600E melanoma progression and strongly suggest that targeting macroautophagy and, particularly TTCCs, might be a good therapeutic strategy to inhibit metastasis of the most common melanoma type (BRAFV600E)
Ribonucleotide reductases of Salmonella Typhimurium : transcriptional regulation and differential role in pathogenesis
Ribonucleotide reductases (RNRs) are essential enzymes that carry out the de novo synthesis of deoxyribonucleotides by reducing ribonucleotides. There are three different classes of RNRs (I, II and III), all having different oxygen dependency and biochemical characteristics. Salmonella enterica serovar Typhimurium (S. Typhimurium) harbors class Ia, class Ib and class III RNRs in its genome. We have studied the transcriptional regulation of these three RNR classes in S. Typhimurium as well as their differential function during infection of macrophage and epithelial cells. Deletion of both NrdR and Fur, two main transcriptional regulators, indicates that Fur specifically represses the class Ib enzyme and that NrdR acts as a global repressor of all three classes. A Fur recognition sequence within the nrdHIEF promoter has also been described and confirmed by electrophoretic mobility shift assays (EMSA). In order to elucidate the role of each RNR class during infection, S. Typhimurium single and double RNR mutants (as well as Fur and NrdR mutants) were used in infection assays with macrophage and epithelial cell lines. Our results indicate class Ia to be mainly responsible for deoxyribonucleotide production during invasion and proliferation inside macrophages and epithelial cells. Neither class Ib nor class III seem to be essential for growth under these conditions. However, class Ib is able to maintain certain growth in an nrdAB mutant during the first hours of macrophage infection. Our results suggest that, during the early stages of macrophage infection, class Ib may contribute to deoxyribonucleotide synthesis by means of both an NrdR and a Fur-dependent derepression of nrdHIEF due to hydrogen peroxide production and DNA damage associated with the oxidative burst, thus helping to overcome the host defenses
Ribonucleotidil Reductases de Salmonella enterica serovar Typhimurium: Regulació Transcripcional i Participació en la Patogènesi
Salmonella enterica serovar Typhimurium (S. Typhimurium) és un patògen intracel·lular gram negatiu que provoca gastroenteritis en humans però que en ratolins provoca una infecció sistèmica similar a la febre tifoidea humana (provocada en aquest cas per S. Typhi). Una de les caracterÃstiques principals de la infecció per S. enterica és la capacitat que presenta per envair activament cèl·lules epitelials i sobreviure i proliferar a l'interior dels macròfags.S. Typhimurium presenta codificades en el seu genoma tres tipus de ribonucleotidil reductases (RNRs): classe Ia, Ib i III. Les RNRs són enzims essencials ja que són els responsables de la sÃntesi de novo dels desoxirribonucleòtids (dNTPs), necessaris per a la sÃntesi i reparació del DNA, a partir de la reducció dels ribonucleòtids (NTPs). Fins ara s'han descrit tres classes de RNRs que es diferencien pel mecanisme de generació del radical que utilitzen, l'estructura que presenten, la seva regulació al·lostèrica i la seva dependència de l'oxigen. Tot i aixÃ, totes tenen en comú el mecanisme de reacció i la utilització d'un radical lliure orgà nic per a iniciar la catà lisi.En aquest treball s'ha estudiat la regulació transcripcional de les tres classes de RNRs presents en S. Typhimurium, centrant-nos en dos reguladors: NrdR i Fur. S'ha estudiat l'efecte de la deleció de NrdR sobre l'expressió gènica de les tres classes de RNRs. NrdR és un repressor de les tres classes de RNRs i presenta un major efecte sobre l'expressió de l'operó nrdHIEF. També s'han descrit les seves caixes d'unió i s'han obtingut proteïnes mutants en determinats residus que afecten la funcionalitat de NrdR in vivo, possiblement degut a la participació d'aquests residus en la unió de dATP/ATP. La mutació de Fur provoca un agument de l'expressió de l'operó nrdHIEF de fins a cinc vegades respecte la soca salvatge. A la regió promotora de l'operó nrdHIEF hi hem detectat una possible caixa d'unió de Fur, la mutació de la qual provoca un augment en l'expressió similar a l'observat en la soca amb Fur delecionat. Mitjançant assajos de retardament electroforètic hem confirmat la unió de Fur a la regió promotora de l'operó nrdHIEF.En condicions normals, S. Typhimurium utilitza la RNR de la classe Ia per a la sÃntesi de novo de desoxirribonucleòtids en presència d'oxÃgen. La classe Ia és essencial per al seu creixement i la classe Ib no és capaç de complementar-ne la seva mutació a no ser que se li introdueixi una còpia extra. La presència de dues RNRs amb activitats redundants en un mateix microorganisme, el fet que en altres espècies bacterianes la sÃntesi de desoxirribonucleòtids en presència d'oxigen la dugui a terme la classe Ib, i que tant en E. coli com S. Typhimurium la classe Ib s'hagi conservat al llarg de l'evolució fa pensar que aquesta classe de RNR ha d'expressar-se en algunes condicions molt concretes de creixement.En aquest treball s'ha estudiat la participació de les RNRs en la virulència de S. Typhimurium SL1344 mitjançant la construcció de mutants de cada una de les tres classes aixà com de dobles mutants i mutants en els seus reguladors (Fur, NrdR). Mitjançant assajos d'infecció de lÃnies cel·lulars de macròfags i també de cèl·lules epitelials hem intentat desvetllar quina de les RNRs és la responsable del creixement de S. Typhimurium durant el procés d'infecció. Els resultats obtinguts indiquen que la RNR responsable de la invasió i de la proliferació a l'interior de macròfags és la classe Ia, mentre que les classes Ib i III no semblen ser essencials. No obstant, observant el comportament de la soca mutant en la classe Ia que presenta la classe Ib sobreexpressada, durant les primeres hores d'infecció (2-6 h) sà que és capaç de sobreviure. Creiem que en aquesta etapa inicial de la infecció, quan es produeix l'explosió respiratoria, es generen unes condicions que activen l'expressió de l'operó nrdHIEF, possiblement la concentració de peròxid d'hidrogen és capaç d'inhibir l'activitat repressora de Fur. La gran demanda de dNTPs a causa del dany al DNA que s'està produint fa necessari un subministrament extra de dNTPs que aportarà la reductasa NrdEF.Salmonella enterica serovar Typhimurium (S. Typhimurium) is a gram negative intracellular human pathogen causing gastroenteritis in humans as well as a systemic infection in mice similar to human typhoid fever (which is caused by S. Typhi). One of the main features of S. enterica infection is its capacity to actively invade epithelial cells and proliferate inside macrophages.S. Typhimurium presents three classes of ribonucleotide reductases (RNRs) in its genome: class Ia, class Ib and class III. RNRs are essential enzymes because they carry out the de novo synthesis of deoxyribonucleotides (dNTPs), needed for DNA synthesis and repair, by reducing ribonucleotides (NTPs). Up to date, three different classes of RNRs have been described, differing in their mechanism of radical generation, their three-dimensional structure, allosteric regulation and their oxygen dependence. Nevertheless, they all have in common the mechanism of reaction and the use of an organic free radical to initiate catalysis.This work has studied the transcriptional regulation of the three RNR classes present in S. Typhimurium, giving importance to two main regulators: NrdR and Fur. We have studied the effects of NrdR deletion in each class of RNR gene expression. Our results indicate that NrdR is a repressor of all three classes, but it shows a stronger repression when regulating nrdHIEF expression. We have also described NrdR recognition sites (NrdR boxes) and we have obtained mutant proteins in some residues that affect NrdR functionality in vivo, possibly due to their participation in dATP/ATP union.Mutation of Fur causes an upregulation of nrdHIEF expression up to five fold compared to the wild type strain. We have detected a putative Fur recognition sequence within the nrdHIEF promoter region. Mutation of this recognition sequence causes an upshift in nrdHIEF expression similar to the level observed in the fur mutant. Using electrophoretic mobility shift assays (EMSA) we have confirmed that Fur interacts with the nrdHIEF promoter region.Under normal conditions, S. Typhimurium uses class Ia RNR to de novo synthesize dNTPs in the presence of oxygen. Class Ia is essential for normal growth and class Ib is not able to complement its mutation unless an extra copy of nrdHIEF is introduced. The presence of two RNRs with redundant activities in the same organism, the fact that other bacterial species use class Ib for dNTP synthesis in then presence of oxygen, and that both E. coli and S. Typhimurium have retained class Ib enzymes during evolution, suggest that this class might be expressed under specific growth conditions.We have studied the role of RNRs in the virulence of S. Typhimurium SL1344 by means of different mutants and double mutants in each RNR class as well as mutants in their transcriptional regulators (Fur, NrdR). Infection assays performed in macrophage cell lines and epithelial cell lines have allowed to elucidate which RNR is responsible for S. Typhimurium growth during infection. Our results indicate that class Ia is the RNR responsible for invasion and proliferation inside macrophages, while class Ib and class III do not seem to be essential. However, class Ia mutants overexpressing class Ib are capable of surviving the first hours of infection (2-6 h). We think that is in this first stage of the infection process (when the oxidative burst takes place), specific conditions generate and activate nrdHIEF expression. It is possible that hydrogen peroxide concentrations are responsible for the inhibition of the Fur repressor activity. The highest demand of dNTPs due to DNA lesions makes it necessary for an extra dNTP supply that will be provided by the NrdEF enzyme
Ribonucleotide reductases of Salmonella Typhimurium : transcriptional regulation and differential role in pathogenesis
Ribonucleotide reductases (RNRs) are essential enzymes that carry out the de novo synthesis of deoxyribonucleotides by reducing ribonucleotides. There are three different classes of RNRs (I, II and III), all having different oxygen dependency and biochemical characteristics. Salmonella enterica serovar Typhimurium (S. Typhimurium) harbors class Ia, class Ib and class III RNRs in its genome. We have studied the transcriptional regulation of these three RNR classes in S. Typhimurium as well as their differential function during infection of macrophage and epithelial cells. Deletion of both NrdR and Fur, two main transcriptional regulators, indicates that Fur specifically represses the class Ib enzyme and that NrdR acts as a global repressor of all three classes. A Fur recognition sequence within the nrdHIEF promoter has also been described and confirmed by electrophoretic mobility shift assays (EMSA). In order to elucidate the role of each RNR class during infection, S. Typhimurium single and double RNR mutants (as well as Fur and NrdR mutants) were used in infection assays with macrophage and epithelial cell lines. Our results indicate class Ia to be mainly responsible for deoxyribonucleotide production during invasion and proliferation inside macrophages and epithelial cells. Neither class Ib nor class III seem to be essential for growth under these conditions. However, class Ib is able to maintain certain growth in an nrdAB mutant during the first hours of macrophage infection. Our results suggest that, during the early stages of macrophage infection, class Ib may contribute to deoxyribonucleotide synthesis by means of both an NrdR and a Fur-dependent derepression of nrdHIEF due to hydrogen peroxide production and DNA damage associated with the oxidative burst, thus helping to overcome the host defenses
Fumarate and nitrate reduction (FNR) dependent activation of the Escherichia coli anaerobic ribonucleotide reductase nrdDG promoter
The nrdDG promoter regulates transcriptional expression of the anaerobic ribonucleotide reductase of Escherichia coli, an essential enzyme required to supply the building blocks for DNA synthesis. In this work, binding of the pleiotropic FNR (fumarate and nitrate reduction) transcriptional regulator to the nrdDG promoter region and the effects of binding on transcription were investigated. Gel retardation analysis with purified FNR* demonstrated FNR interaction at two FNR sites, termed FNR-2 and FNR-1, while studies with altered FNR boxes indicated that the upstream FNR-2 site was essential for anaerobic activation of the nrdDG promoter. Although the FNR-1 site was not absolutely required, it allowed maximal expression of this promoter. These results suggest that the two sites have an additive effect in coordinating nrdDG expression in response to shifting oxygen concentrations