3 research outputs found

    AtMND1 is required for homologous pairing during meiosis in Arabidopsis

    Get PDF
    BACKGROUND: Pairing of homologous chromosomes at meiosis is an important requirement for recombination and balanced chromosome segregation among the products of meiotic division. Recombination is initiated by double strand breaks (DSBs) made by Spo11 followed by interaction of DSB sites with a homologous chromosome. This interaction requires the strand exchange proteins Rad51 and Dmc1 that bind to single stranded regions created by resection of ends at the site of DSBs and promote interactions with uncut DNA on the homologous partner. Recombination is also considered to be dependent on factors that stabilize interactions between homologous chromosomes. In budding yeast Hop2 and Mnd1 act as a complex to promote homologous pairing and recombination in conjunction with Rad51 and Dmc1. RESULTS: We have analyzed the function of the Arabidopsis orthologue of the budding yeast MND1 gene (AtMND1). Loss of AtMND1 did not affect normal vegetative development but caused fragmentation and missegregation of chromosomes in male and female meiosis, formation of inviable gametes, and sterility. Analysis of the Atmnd1 Atspo11-1 double mutant indicated that chromosome fragmentation in Atmnd1 was suppressed by loss of Atspo11-1. Fluorescence in situ hybridization (FISH) analysis showed that homologous pairing failed to occur and homologues remained apart throughout meiosis. AtMND1 showed strong expression in meiocytes as revealed by RNA in situs. CONCLUSION: We conclude that AtMND1 is required for homologous pairing and is likely to play a role in the repair of DNA double strand breaks during meiosis in Arabidopsis, thus showing conservation of function with that of MND1 during meiosis in yeast

    The plant adherin AtSCC2 is required for embryogenesis and sister-chromatid cohesion during meiosis in Arabidopsis

    No full text
    Adherin plays an important role in loading the cohesin complex onto chromosomes, and is essential for the establishment of sister-chromatid cohesion. We have identified and analyzed the Arabidopsis adherin homolog AtSCC2. Interestingly, the sequence analysis of AtSCC2 and of other putative plant adherin homologs revealed the presence of a PHD finger, which is not found in their fungal and animal counterparts. AtSCC2 is identical to EMB2773, and mutants show early embryo lethality and formation of giant endosperm nuclei. A role for AtSCC2 in sister-chromatid cohesion was established by using conditional RNAi and examining meiotic chromosome organization. AtSCC2-RNAi lines showed sterility, arising from the following defects in meiotic chromosome organization: failure of homologous pairing, loss of sister-chromatid cohesion, mixed segregation of chromosomes and chromosome fragmentation. The mutant phenotype, which included defects in chromosome organization and cohesion in prophase I, is distinct from that of the Arabidopsis cohesin mutant Atrec8, which retains centromere cohesion up to anaphase I. Immunostaining experiments revealed the aberrant distribution of the cohesin subunit AtSCC3 on chromosomes, and defects in chromosomal axis formation, in the meiocytes of AtSCC2-RNAi lines. These results demonstrate a role for AtSCC2 in sister-chromatid cohesion and centromere organization, and show that the machinery responsible for the establishment of cohesion is conserved in plants
    corecore