143 research outputs found

    Getting into hot water:sick guppies frequent warmer thermal conditions

    Get PDF
    Ectotherms depend on the environmental temperature for thermoregulation and exploit thermal regimes that optimise physiological functioning. They may also frequent warmer conditions to up-regulate their immune response against parasite infection and/or impede parasite development. This adaptive response, known as ‘behavioural fever’, has been documented in various taxa including insects, reptiles and fish, but only in response to endoparasite infections. Here, a choice chamber experiment was used to investigate the thermal preferences of a tropical freshwater fish, the Trinidadian guppy (Poecilia reticulata), when infected with a common helminth ectoparasite Gyrodactylus turnbulli, in female-only and mixed-sex shoals. The temperature tolerance of G. turnbulli was also investigated by monitoring parasite population trajectories on guppies maintained at a continuous 18, 24 or 32 °C. Regardless of shoal composition, infected fish frequented the 32 °C choice chamber more often than when uninfected, significantly increasing their mean temperature preference. Parasites maintained continuously at 32 °C decreased to extinction within 3 days, whereas mean parasite abundance increased on hosts incubated at 18 and 24 °C. We show for the first time that gyrodactylid-infected fish have a preference for warmer waters and speculate that sick fish exploit the upper thermal tolerances of their parasites to self medicate

    Can inorganic elements affect herpesvirus infections in European eels?

    Get PDF
    SHORT RESEARCH AND DISCUSSION ARTICLEIn combination, pollution and pathogens represent a serious threat to the health of European eels that has been increasingly recognized. Thus, the impact of contaminants, cadmium, lead,mercury, and selenium, on anguillid herpesvirus 1 infection inwild European eels has been evaluated. Despite the small sample size, results indicate that selenium and mercury concentrations may compromise the European eel immune system as herpesvirus infection was more prevalent in specimens with higher Hg and Se hepatic concentrations.VersiĂłn del editor2,65

    Metallothionein (MT) -I and MT-II Expression Are Induced and Cause Zinc Sequestration in the Liver after Brain Injury

    Get PDF
    Experiments with transgenic over-expressing, and null mutant mice have determined that metallothionein-I and -II (MT-I/II) are protective after brain injury. MT-I/II is primarily a zinc-binding protein and it is not known how it provides neuroprotection to the injured brain or where MT-I/II acts to have its effects. MT-I/II is often expressed in the liver under stressful conditions but to date, measurement of MT-I/II expression after brain injury has focused primarily on the injured brain itself. In the present study we measured MT-I/II expression in the liver of mice after cryolesion brain injury by quantitative reverse-transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) with the UC1MT antibody. Displacement curves constructed using MT-I/II knockout (MT-I/II−/−) mouse tissues were used to validate the ELISA. Hepatic MT-I and MT-II mRNA levels were significantly increased within 24 hours of brain injury but hepatic MT-I/II protein levels were not significantly increased until 3 days post injury (DPI) and were maximal at the end of the experimental period, 7 DPI. Hepatic zinc content was measured by atomic absorption spectroscopy and was found to decrease at 1 and 3 DPI but returned to normal by 7DPI. Zinc in the livers of MT-I/II−/− mice did not show a return to normal at 7 DPI which suggests that after brain injury, MT-I/II is responsible for sequestering elevated levels of zinc to the liver. Conclusion: MT-I/II is up-regulated in the liver after brain injury and modulates the amount of zinc that is sequestered to the liver

    Adrenocorticotropic Hormone Suppresses Gonadotropin-Stimulated Estradiol Release from Zebrafish Ovarian Follicles

    Get PDF
    While stress is known to impact reproductive performance, the pathways involved are not entirely understood. Corticosteroid effects on the functioning of the hypothalamus-pituitary-gonadal axis are thought to be a key aspect of stress-mediated reproductive dysfunction. A vital component of the stress response is the pituitary secretion of adrenocorticotropic hormone (ACTH), which binds to the melanocortin 2 receptor (MC2R) in the adrenal glands and activates cortisol biosynthesis. We recently reported MC2R mRNA abundance in fish gonads leading to the hypothesis that ACTH may be directly involved in gonadal steroid modulation. Using zebrafish (Danio rerio) ovarian follicles, we tested the hypothesis that acute ACTH stimulation modulates cortisol and estradiol (E2) secretion. ACTH neither affected cortisol nor unstimulated E2 release from ovarian follicles. However, ACTH suppressed human chorionic gonadotropin (hCG)-stimulated E2 secretion in a dose-related manner, with a maximum decrease of 62% observed at 1 I.U. ACTH mL−1. This effect of ACTH on E2 release was not observed in the presence of either 8-bromo-cAMP or forskolin, suggesting that the mechanism(s) involved in steroid attenuation was upstream of adenylyl cyclase activation. Overall, our results suggest that a stress-induced rise in plasma ACTH levels may initiate a rapid down-regulation of acute stimulated E2 biosynthesis in the zebrafish ovary, underscoring a novel physiological role for this pituitary peptide in modulating reproductive activity

    Fishery-Induced Selection for Slow Somatic Growth in European Eel

    Get PDF
    Both theoretical and experimental studies have shown that fishing mortality can induce adaptive responses in body growth rates of fishes in the opposite direction of natural selection. We compared body growth rates in European eel (Anguilla anguilla) from three Mediterranean stocks subject to different fishing pressure. Results are consistent with the hypotheses that i) fast-growing individuals are more likely to survive until sexual maturity than slow-growing ones under natural conditions (no fishing) and ii) fishing can select for slow-growing individuals by removing fast-growing ones. Although the possibility of human-induced evolution seems remote for a panmictic species like such as the European eel, further research is desirable to assess the implications of the intensive exploitation on this critically endangered fish

    Cortisol coregulation in fish

    Get PDF
    Cortisol coregulation, which is the up- or down-regulation of partners’ physiological stress responses, has been described for individuals with strong attachment bonds, e.g. parents and their children, and romantic relationship partners. Research into moderating effects on cortisol coregulation suggests stronger covariation among distressed partners. Whether cortisol coregulation is unique to humans or can also be found in other species that share universal features of the vertebrate stress response remains unexplored. Using a repeated measures approach and non-invasive waterborne hormone analysis, we test the hypothesis that dyads of three-spined stickleback fish (Gasterosteus aculeatus) coregulate their cortisol levels in shared environments. Dyadic cortisol levels were unrelated when cohabiting (home tank), but significantly covaried when sharing a more stressful (as indicated by higher cortisol levels) environment (open field). Time-lag analysis further revealed that open field cortisol levels were predicted by partner’s cortisol levels prior to the shared experience. To our knowledge, this study provides the first evidence for coregulatory processes on cortisol responses in a non-human animal that lacks strong bonds and social attachment relationships, suggesting a shared evolutionary origin of cortisol coregulation in vertebrates. From an adaptive perspective, cortisol coregulation may serve to reduce risk in challenging, potentially threatening situations

    Night Shift: Expansion of Temporal Niche Use Following Reductions in Predator Density

    Get PDF
    Predation shapes many fundamental aspects of ecology. Uncertainty remains, however, about whether predators can influence patterns of temporal niche construction at ecologically relevant timescales. Partitioning of time is an important mechanism by which prey avoid interactions with predators. However, the traits that control a prey organism's capacity to operate during a particular portion of the diel cycle are diverse and complex. Thus, diel prey niches are often assumed to be relatively unlikely to respond to changes in predation risk at short timescales. Here we present evidence to the contrary. We report results that suggest that the anthropogenic depletion of daytime active predators (species that are either diurnal or cathemeral) in a coral reef ecosystem is associated with rapid temporal niche expansions in a multi-species assemblage of nocturnal prey fishes. Diurnal comparisons of nocturnal prey fish abundance in predator rich and predator depleted reefs at two atolls revealed that nocturnal fish were approximately six (biomass) and eight (density) times more common during the day on predator depleted reefs. Amongst these, the prey species that likely were the most specialized for nocturnal living, and thus the most vulnerable to predation (i.e. those with greatest eye size to body length ratio), showed the strongest diurnal increases at sites where daytime active predators were rare. While we were unable to determine whether these observed increases in diurnal abundance by nocturnal prey were the result of a numerical or behavioral response, either effect could be ecologically significant. These results raise the possibility that predation may play an important role in regulating the partitioning of time by prey and that anthropogenic depletions of predators may be capable of causing rapid changes to key properties of temporal community architecture

    Temporal progression in migratory status and sexual maturation in European silver eels during downstream migration

    Get PDF
    The onset of downstream migration of European eels is accompanied by a cessation of feeding and the start of sexual maturation which stresses the link between metabolism and sexual maturation, also suggesting an important role for exercise. Exercise has been tested with eels in swim tunnels and was found to stimulate the onset of sexual maturation. In this study, we have investigated the interplay between migration and maturation in the field during the downstream migration of female silver eels. Temporal changes in migratory status and sexual maturation among silver eels of the upstream Rhine River system over 3 months of the migration season (August, September and October) were determined in biometrical parameters, plasma 17β-estradiol and calcium levels, oocyte histology and gonadal fat levels. Furthermore, the ecological relevant parameters age as determined by otolithometry and health aspects indicated by haematocrit, haemoglobin and swim-bladder parasite load were measured. Silver eels were estimated to be 14 years old. A strong temporal progression in migratory stage was shown over the months of downstream migration. Catches probably represented a mix of reproductive migrants and feeding migrants of which the ratio increased over time. Furthermore, this study confirmed our hypothesis linking the migratory stage to early maturation as indicated by enlargement of the eyes, oocyte growth and fat deposition in the oocytes, exactly the same changes as found induced by exercise but not ruling out environmental influences. Migrants show extensive fat uptake by the oocytes, probably stimulated by the swimming exercise. In addition, at least 83% of the silver eels in this spawning run may have suffered from negative effects of swim-bladder parasites on their swimming performance
    • …
    corecore